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This paper reports a free vibration analysis of thick plates with rounded corners
subject to a free, simply-supported or clamped boundary condition. The plate
perimeter is defined by a super elliptic function with a power defining the shape
ranging from an ellipse to a rectangle. To incorporate transverse shear
deformation, the Reddy third-order plate theory is employed. The energy integrals
incorporating shear deformation and rotary inertia are formulated and the p-Ritz
procedures are used to derive the governing eigenvalue equation. Numerical
examples for plates with different shapes and boundary conditions are solved and
their frequency parameters, where possible, are compared with known results.
Parametric studies are carried out to show the sensitivities of frequency parameters
by varying the geometry, fibre stacking sequence, and boundary condition.
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1. INTRODUCTION

The extensive use of fiber-reinforced composites as primary structural components
in aerospace, civil, electronic, and many other engineering disciplines has
motivated research on the free vibration of laminated plates. Almost all previous
research has focused on rectangular laminated plates and none has considered
rectangular laminates with rounded corners even though this plate geometry has
practical importance in various engineering applications, such as printed circuit
boards. The rounded corners are advantageous in helping to diffuse and dilute
stress concentrations at the otherwise sharp corners. The shape of rectangular
laminated plates with rounded corners can be described by a super elliptical
function. Varying the super elliptic power in the super elliptical function can
generate a plate shape ranging from a square or rectangular to a circle or ellipse.
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The free vibration characteristics of super elliptical plates, including elliptical
and circular plates, can be found in many earlier works [1-6]. Most previous works
considered the free vibration of circular or elliptical plates in polar or elliptic
co-ordinates which are naturally unsuitable for laminated plates with fibrous
directions coinciding with the Cartesian co-ordinate system. Wang er al. [7]
presented a complete investigation of free vibration and buckling analyses of thin
super elliptical plates using the p-Ritz method and the classical thin plate theory.
This work was further expanded by Lim and Liew [§8] and Lim et al. [9] to isotropic
perforated and composite laminated super elliptical plates, respectively. To
examine the effects of transverse shear deformation, Liew et al. [10] extended their
previous works [7-9] to isotropic thick super elliptical plates by incorporating
Reddy’s higher-order plate theory [11] in the p-Ritz method for free vibration
solutions.

Although the classical thin plate theory provides an easy way to analyze the thin
composite laminates [9], this theory has many drawbacks because of the Kirchhoff
assumptions which lead to zero transverse shear strains and zero transverse normal
strain. As laminated composite panels are often weaker in shear mode, the
transverse shear strain must be taken into account. The first-order shear
deformation theory for composite laminates proposed by Yang et al. [12] gained
its popularity because it provides an easy way to incorporate the effects of
transverse shear. In this theory, shear correction factors are used to compensate
for the assumption made of zero transverse shear strain on the top and bottom
surfaces of the laminated plate. However, for laminated composite panels, the
shear correction factor depends on various factors and is unknown for arbitrarily
composite laminates. The requirement for shear correction factors in the
first-order shear deformation theory has made it less attractive for many
applications.

In an effort to circumvent the problems of shear correction factors, various
second and higher-order shear deformation theories have been developed. The
most popular one was the higher-order shear deformation theory proposed by
Reddy [11]. The displacement field of Reddy’s higher-order shear deformation
theory accommodates parabolic variation of transverse shear strains and vanishing
transverse shear stresses on the top and bottom of a general laminate. Therefore,
no shear correction factor is required in this theory. The theory has been shown
to provide reasonably accurate free vibration solutions for moderately thick
laminates [13, 14].

This paper examines the free vibration behavior of moderately thick symmetric
laminates of super elliptical planform. This investigation forms a natural extension
of the work of Liew et al. [10] from the isotropic case to a laminated panel. Because
transverse shear deformation plays an important role in the analysis of composite
laminates, Reddy’s higher-order plate theory has been used to formulate the
energy integral functional so that no shear correction factor is needed. The p-Ritz
procedure is used to minimize this energy integral functional to arrive at the
governing eigenvalue equation. To illustrate the method, several numerical
examples of super elliptical symmetrically laminated plates with different plate
geometries and boundary conditions are solved. Parametric studies are also carried
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Figure 1. Geometric definitions of laminated super elliptical plates.
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out to examine the effects of plate geometry, boundary conditions, super elliptical
power, aspect ratio, length-to-thickness ratio, and fibre stacking sequences on the
vibration frequency parameters.

2. MATHEMATICAL FORMULATION

The thick super elliptical laminated plate and associated reference Cartesian
co-ordinate system are shown in Figure 1. The dimensions of the laminated plate

TABLE 1

Convergence of the frequency parameter, /. = wab./ph/D,, for the super elliptical
plate with a/b =2, alh =5, n =10, and stacking sequence [30/ — 30]s

Mode sequence number

A

Boundary ,
condition p

1

2

3

4

5

6

7

8

Free 7
9
11
13
15

Simply- 7
supported 9
11
13
15

Clamped 7
9

11

13

15

3-1476
3-1463
3-1460
3-1460
3-1460

47687
4-7286
47256
47247
47244

6-1453
6-1019
6-0992
6-0983
6-0980

4-1104
4-1087
4-1083
4-1083
4-1083

7-0959
7-0227
7-0172
7-0156
7-0151

83177
8:2274
8-2211
8:2194
8:2190

6-1582
6-1509
6-1494
6-1492
6-1491

7-9043
7-9043
7-9042
7-9042
7-9042

11-4036
11-1160
10-9825
10-9710
10-9698

6-5514
6-5466
6-5458
6-5456
6-5456

8-4316
8:4292
8-4287
8-4286
8:4286

13-1248
11-3441
11-3373
11-3358
11-3355

6-8263
6-8194
6-8185
6-8183
6-8183

9-1080
9-1075
9-1074
9-1073
9-1073

15-3118
13-3422
13-1520
13-1401
13-1380

7-9043
79043
7-9042
7-9042
79042

10-0296
9-8742
9-8029
9-7956
97947

17-5963
14-3497
14-0344
14-0117
14-0097

8-4316
8:4292
8-4287
8-4286
8:4286

10-1051
10-0286
10-0284
10-0283
10-0283

18-5385
16-2542
15-8044
15-7639
157597

8:5328
8-5103
8-5081
8:5076
8-5075

11-1485
10-0681
10-0632
10-0616
10-0614

19-4088
17-5993
17-4993
17-1540
17-1133
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TABLE 2

Comparison of the frequency parameters, A, = w(a/ﬂ:)z\/ ph/D,, for the thin, super
elliptical, isotropic, plate with a/b = 2

Mode sequence number
A

Source 1 2 3 4 5 6
n = 1, simply-supported plate
Reference [2] 5-358 — — - - -
Reference [7] 5-355 9582 15533  18-704  23-298  25-439
Present 5-355 9579 15529 18701  23-290  25-429
n =1, clamped plate
Reference [3] 11-:097 16-005 22-684 28317 31203 35681
Reference [7] 11100 16:008 22:689  28-:327 31-205 35-683
Present 11-094 16:005 22-681 28-:304 31:197 35671
n = 10, simply-supported plate
Reference [7] 4986 7969 12:955 16989 19953  20-003
Present 4985 7967 12966 16983 19958 19987
n = 10, clamped plate
Reference [7] 9-951 12:897 18132 25743 25926  28-805
Present 9962 12:904 18154 25701 25930  28-809

are assumed to be a, b, and / in the x, y, and z directions. The periphery of the
super ellipse is defined by the super elliptical function

2x 2n 2y 2n B
(&) () = ®

in which 7 is the power of super ellipse. The shape becomes an ellipse if the super
elliptical power n is 1. Interestingly, if the power n is continually increased, the
plate becomes a rectangle with four rounded corners. Higher values of » lead to
a smaller corner radius. The plate becomes a rectangle as n approaches infinity.
The laminae are assumed to possess a plane of elastic symmetry parallel to the
xy plane and are stacked symmetrically with respect to the middle surface of the
laminate. The vibration frequencies of the super elliptical laminate subjected to a
variety of boundary conditions, aspect ratios, length-to-thickness ratios, super
elliptical powers, number of plies, and stacking angles are to be determined.

2.1. GOVERNING EQUATIONS

Let u, v, and w be the in-plane and out-of-plane displacement components of
a general point of the thick super elliptical laminated plate. The displacement field



VIBRATION OF THICK SUPER ELLIPTICAL LAMINATES 663

of a laminated plate based on Reddy’s higher-order shear deformation theory can
be assumed as:

473 0 LV,
u(x, v, 2, 1) = uo(x, p, ) + 2 (x, v, 1) — 3—22 <¢,\,(x, yo0) 4 W()(;xy)>

4z3 ow(x, y, t
U(X, Y, 2z, t) = Uo(x, Vs Z) + Zd).v(x’ Vs [) _322<¢,\‘(xa Vs [) +W(‘;yy)>a

W(xsyszv t)=W0(xay’ [)7 (2)

where uy, vy, Wo, ¢, and ¢, are the displacement and rotation components of the
mid-plane of the laminated plate in the Cartesian co-ordinate system.

In linear elastic analysis, the stress—strain relationship for the kth lamina in the
Cartesian co-ordinate system is given by

[0]c = [O1[Elk. 3)

TABLE 3

Comparison of frequency parameters, A, = a)a\/ p/iE, for the isotropic, super
elliptical, thick plate with a/b =1 and hja = 0-3

Mode sequence number
Al

- A
Source 1 2 3 4 5 6
n =1, free plate
Reference [10] 0-6192 06193 1-0298 1-3704 1-3704 2-1784
Present 0-6192 06193 1-0298 1-3704 1-3707 2-1784
n = 10, free plate
Reference [10] 0-3898 0-5734 0-7151 09783 09783 1-6874
Present 0-3898 0-5734 0-7151 09780 09783 1:6874
n = 1, simply-supported plate
Reference [10] 0-5785 1-5291 1-5291 2-6301 2-6301 2-9091
Present 0-5784 1-5291 1-5291 2-6301 2:6301 2-9091
n = 10, simply-supported plate
Reference [10] 0-5532 13429 1-3429 2-0376 24412 2-5420
Present 0-5530 13429 1-3429 2-0377 24412 2-5420
n =1, clamped plate
Reference [10] 1-1216  2:1616 2-1616 32944 3-2948 3-6893
Present 1-1216  2:1615 2-1617 3-:2948 32951 3-6897
n = 10, clamped plate
Reference [10] 09862 1-8839 1-8839 26440 3-1176 3-1467

Present 0-9863 1-8845 1-8845 2:6455 3-1187 3-1478
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TABLE 4

Comparison of frequency parameters, A; = waz\/ ph/Dy, for the clamped, thin,
laminated, circular plate of E-glass/epoxy with stacking sequence [(0] — 0)4]s

Mode sequence number

A
r N

Source 0 1 2 3 4 5 6 7 8
Reference [15] 0 32:859 60:062 75-686 99-436 109-43 139-76 149-39 154-08
Present 32:860 60-057 75688 99-426 109-41 139-76 149-37 154-05
Reference [15] 15 32-871 61-208 74-842 10129 110-72 137-67 151:62 156-87
Present 32:871 61-203 74-843 101-28 110-71 137-66 151-59 156-85
Reference [15] 30 32:893 64192 72-438 106-10 113-09 13243 157-76 162-28
Present 32:893  64:186 72:438 106-09 113-07 132:42 15773 162:26
Reference [15] 45 32904 67-000 69-908 109-88 113-80 128-85 162:76 164-33
Present 32:904 66996 69904 109-87 113-78 128:84 162:74 164-30

in which, [o]i, [¢]r and [Q]k are stress, strain, and moduli of the kth lamina in the
reference Cartesian co-ordinate. Here, (Q;), are obtained from the transform
matrix with fibre angle 6, and the stiffness constants, (Q;):, which are related to
the material properties, E;, E,, vi2, va, G2, Gis, G, of each ply.

Neglecting the effect of transverse normal stress o., for a laminated plate
consisting of N orthotropic laminae, the total strain energy for the entire laminated
plate is given by,

U:

1M =

Iy
JJJ (0.6 + 0,6 + 06 + 0,26 + 06y ) dz dA. 4)
1 h

k—1

1
2

k

Similarly, the expression for total kinetic energy 7 due to the free vibration of

laminated plate is,
Iy P ) s
' ou ov ow
A

in which p, is the mass density of the kth lamina.
As [Q]: changes from layer to layer, it is possible to obtain the equivalent moduli
for the entire plate,

T:

I M=

1
2

k

N i 11
(Ay, By, Dy, Ey, Fy, Hy) = Z (Qii)k(la z,2%, 2, 2%, 2% dz. (6)

k=1 Jny
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Here, all B; and E; vanish if the laminae are stacked symmetrically about the
mid-plane. For the free vibration problem, the deflection and rotation functions
of the laminate mid-plane are periodic in time. Therefore, for small amplitude
vibration, one can assume the displacement and rotation components to be
expressed in the following forms:

uy(x, y, t) = U(x, y) sin wt,

vo(x, ¥, t) = V(x, y) sin wt,

WO(X’ Vs t) = W(xa y) Sil’l (,l)l,

¢d.(x,y,1) = 0,(x,y)sin wt,

¢y(x,y,1) = O,(x, y) sin wt. (7)
8
<
7%
—0
Cl anped
Gti
‘O--g-Om--Qe-someeremeees--=--0
5L Si nmpl y- supported
<
4 —
3%
l\mu-m:_._
2 Free
1 | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.!

I'og(n)

Figure 2. Effect of super elliptical power n on the frequency parameter / of super elliptical
laminate with a/h = 5, a/b = 2, and stacking sequence [45/ — 45]s.
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TABLE 5

Lowest eight frequency parameters A for the super elliptical plates with alh =5,
al/b =2, and stacking sequence [45] — 45]s

Mode sequence number

Boundary . A \
n  condition 1 2 3 4 5 6 7 8
1 Free 2:5983 5-5466 5-6871 62363 6:7571 8-8092 8:9605 10-3471

Simply-sup. 5-8709 6-2363 67571 8:2904 10-3471 10-9209 12-2416 12-4805
Clamped 7-2989 9-6234 12-2365 14-1092 15-0761 16-7466 18-0747 19-4689

2 Free 23905 44875 52666 52702 6-1986 7-5522  8-1619 9-5922
Simply-sup. 54615 6-1986 61986 9-5922  9-8779 11-2300 11-5093 12-:0360
Clamped 6-7518 8:6016 10-9800 13-0685 137594 14-8506 16-6438 17-0408

4 Free 2-3058 4-1015 4-8653 5-1628 6-0206 7-0087 7-8226 §-8646
Simply-sup. 54046 6:0206 7-2586 9-4409 9-6891 10-5042 11-3674 11-4598
Clamped 66521 8-:3929 10-7465 12-8891 13-5156 14-3640 16-4075 16-4124

6 Free 22827 4-0093 4-7657 5-1422 59833 6:8665 7-7474 8-6656
Simply-sup. 5-4021 5-9833  7-2468 9-4236 9-6707 10-2982 112774 11-3542
Clamped 6-6404 8-3662 10-7158 12-8724 13-4803 14-2955 16-3062 16-3867

8 Free 2:2730 3-9732 47262 5-1341 59696 6-8088 7-7201  §-5827
Simply-sup. 54026 5-9696 7-2459 9-4197 9-6681 10-2128 11-1988 11-3522
Clamped 6-6374 8-3592 10-7077 12-8688 13-4708 14-2773 16-:2767 16-3823

10 Free 2:2680 3-9554 47067 5-1300 5-9631 67798 77073  §-5401
Simply-sup. 54032 5-9631 7-2465 9-4184 9-6685 10-1696 11-1583 11-3520
Clamped 6:6364 8-3568 10-7053 12-8678 134678 14-:2712 16-2662 16-3823

20 Free 2:2606 3-9301 4-6786 5-1235 59543 67376 7-6903 8-4764
Simply-sup. 5-4051 5-9543 72499 9-4175 9-6717 10-1066 11-0989 11-3539
Clamped 6-5836 8-3219 10-6675 12-7623 13-4078 14-2257 16-2162 16-3286

oo Free 22579 39213 46688 5-1210 59515 6:7226 7-6849  §-4527
Simply-sup. 5-4064 5-9515 7-2533 9-4174 9-6749 10-0843 11-0780 11-3554
Clamped 66352 8-:3544 10-7017 12-8668 13-4632 14-2651 162554 16-3739

Substituting equation (7) into equations (4) and (5) yields the maximum strain
energy U,.. and the maximum kinetic energy 7,.. during a vibratory cycle. In the
Rayleigh—Ritz method, the governing equation for the free vibration of laminated
plate can be established by minimizing the following governing total energy
functional,

H = Umax - Tma,\’- (8)

The Rayleigh—Ritz method requires the solution to be in the form of a series
containing unknown parameters. As a result, the non-dimensional displacement
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and rotation components can be approximated by assuming a finite set of
unknown parameters in the functionals.

m

U, n) =Y col& n),

i=1

m

Vg, n) =3, coi(E,n),

i=1

WE =3 ol )

i=1

0. =3 chol(E, ).

i=1

m

0., n) =Y, col (&, n), )

i=1

L 1 1 1 1 1
0 15 30 45 60 75 90

Figure 3. Effect of stacking angle 0 on the frequency parameter /; of super elliptical laminate with
alh =5, a/b =2, and stacking sequence. [0/ — 0]s. —@—, n=1, free; ——, n=1, ss; —A—,
n =1, clamp; —&—, n = 10, free; —[1—, n = 10, ss; —A—, n = 10, clamp; — x—, n= o0, free;
—*— n= oo, free; —+—, n=o0, clamp.
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TABLE 6

Displacement contours for lowest four frequencies of free, super elliptical laminate
with n =1 and 10, a/h = 5, and stacking sequence [0] — 0]s

Mode sequence number

n=1 n=10
A N
0 1 2 3 4 1 2 3 4
0
15
2.9709
30 7
N
45
60
75
90 o,
Rl [ i
1.9576 3.1600 3.7627 4.2841 1.5896 2.1169 2.9215 3.7823

where ¢!, ¢!, ¢, @, and ¢! are the shape functions and ¢!, ¢/, ¢/, ¢/, and ¢/
are the associated unknown coefficients. ¢ and 5 denote the non-dimensional
co-ordinates given by

_X =7

The problem now lies in finding suitable shape functions that are general for any
boundary conditions and plate geometries.

2.2. p-RITZ PROCEDURES

In the p-Ritz procedures, the shape functions, ¢!, ¢!, ¢!, ¢, and @/ are
assumed to be the product of two-dimensional polynomials and basic functions
as follows:

(&, n) = fil&,mes (&, n), (11)

in which k = u, v, w, 0, and 0,. The functional f;(£, #) can be constructed by a
two-dimensional polynomial series

YhEm=Y Y e (12)

q=0i=0
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Therefore, the number of terms m in equation (9) becomes

SELEE) )

where p is the highest degree of the set of two-dimensional polynomials.

To satisfy the geometry of a laminated plate, the basic function ¢j(&, ) in
equation (9) is assumed to be the product of boundary expressions of all
supporting edges. The basic function, for the super elliptical laminated plate with
super elliptic power n, can be assumed as

@p (S, m) = 12" + 2n)” — 117, (14)

in which QF represents the associated basic power of boundary expression to
ensure automatic satisfaction of the boundary condition of the supporting edge.
They are assumed to be 0, 1, and 2 depending on whether the boundary condition
of the supporting edge is free, simply supported, or clamped. Note that the
simply-supported edges are subject to constraint in the z direction only, i.e., the
soft simply-supported condition.

35

30—

25—

15—

10—

0 1 1 1
0.0 1.0 2.0 3.0 4.0

alb

Figure 4. Effect of aspect ratio a/b on the frequency parameter A; of super elliptical laminate with
a/h =5, and stacking sequence [45/ — 45]s. —@—, n=1, free; ——, n=1,ss; —A—, n=1,
clamp; —O—, n =10, free; —[1—, n = 10, ss; —A—, n = 10, clamp.
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16

14 —

12—

4 1 1 1 1 1
0.5 1.0 1.5 2.0 2.5 3.0 3.t

I og(alh)

Figure 5. Effect of length-to-thickness ratio «@/h on the frequency parameter /4 of
simply-supported, super elliptical laminate with a/b = 2 and stacking sequence [45/ — 45]s. —O—,
n=1,—0O0—n=2,—A— n=4;, —[]—, n=10.

Substituting equation (9) into equation (7) and minimizing the total energy
functional II with respect to the unknown coefficients yields the governing
eigenvalue equation

{[K] — 2[M]} {c} = {0}, (15)

where {c} = {c¢" ¢" ¢" ac’ bc™}".

If all laminae are made of the same material, the non-dimensional frequency
parameter A can be expressed in terms of frequency, plate dimensions, D,, and
mass density per unit volume p as

o
A = wab Dy (16)
where
l’jn]’l3

DO - 12(1 — V|2V21). (17)
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The vibration frequencies and mode shapes of super elliptical laminates are then
obtained by solving A. In addition, the stiffness matrix K and the mass matrix M
in equation (15) are given by

K9 K7 0 0 0
[K"] 0 0 0
Kl =3 K™ [K"] K]
(18)
sym. [K%] [K'"]
[K()”{)"]
TABLE 7

Displacement contours and mode shapes for lowest four frequencies of elliptical
laminate with a/b =2, a/h = 5, and stacking sequence [(45] — 45),]s

Di spl acenent contour
Boundary Mode , N v 3-D node Frequency
condi tion nunber Top M ddl e Bottom shape par anet el
surface surface surface

Free 1

2. 6506

2 5.9443

3 6.2079

4 6.2363

Si mpl y- supported 1 6. 2363
2 6.3032

3 6. 7571

4 8.8983

Cl anped 1 7.7140
2 10. 2645

3 13.1000

4 14. 9326

(>
NE

S
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TABLE 8
Displacement contours and mode shapes for lowest four frequencies of super elliptical
laminate with n =10, a/b =2, a/h = 5, and stacking
sequence [(45) — 45),]s

Di spl acenent contour
Boundary Mode , 4 v 3-D node Frequency
condi tion nunber Top M ddl e Bott om shape par anet er
surface surface surface

Free 1

2.3509
2 4.4115
3 4.7067
4 5.3671
Si nmpl y-supported 1 4.7067
2 5.8077
3 5. 9631
4 7.7897
Cl anped 1 7. 0291
2 8. 9015
8 11. 4386
4 13. 6623
and
M 0 0 0 0 |
M7 0 0 0
M) = Mo M M| (1)
sym. [M%] 0
i [M%] ]
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TABLE 9

Lowest eight frequency parameters A for free elliptical laminate with a/lh = 5 and
stacking sequence [(0] — 0),]s

Mode sequence number

A
r N

n alb 0 1 2 3 4 5 6 7 8

1 1 0 38355 3-8529 7-9348 §:2319 99345 99391 10-0149 11-8522
15 3-8740 6-5375 8-4631 10-2392 10-8724 11-1064 12-2286 13-5895
30 39148 8-3484 9-8057 10-2638 12-0214 12-1627 12-4177 15-7178
45 39542 8-8445 9-9859 11-5871 11-9448 12-4695 14-5405 14-5416

2 0 3-3359 5-3822 67392 7-1214 72982  7-5228  8-0060  9-4220
15 47554 5-3504 7-4126  8-2400 87515 9-4957 10-6249 11-7389
30 3-7594 6:0876 7-5448  §-3758  §:9408  9-5433 10-8490 11-2601
45 26506 59443 6:2079 62363  6-7571  9-5001  9-6956 10-3471
60 2-1292 4-6003 4-7504  5-5990 59170 77753  9-3017  9-3387
75 19867 4-1299 43715 49561 52199 7-0919 81632  §-2162
90 1.9576 3-1600 3-7627 4-2841  5-1030  5-7620  6-5888 69207

4 0 2-:0750 3-1010 3-3501 3-7560 4-6385 4-8308 5-4232  6-6055
15 2-5733 3-0238 43726 5-3614 54861 6-:3102 7-5503  7-7521
30 2-1160 2:9655 3-4556  3-8548 54207 57005 6-1616  7-3944
45 1-3891 18632 2:9139 29307 3-7558 4-1840 4-5754 4-9846
60 1-0817 1-3745 2-:3673  2-7859  2:8569  3-0535 3-8250 4-6572
75 09993 1-2444 2-2028 2-5095 2:6218 27276  3-5784  4-2236
90 0-9835 1-1788 19636 2-1667 2-4477 2-5733  3-4263  3-5188

10 1 0 24422 3-1796 5-3338  7-4437 7-5641 83404 86276 9-2342
15 3-2413 4:3501 7-6215 77276  7-9058  8-7520 10-4285 11-0553
30 3-5714 5-7322 8-6906 87032 89507 9-1548  9-3485 11-8926
45 3-8418 6:0597 87538 91791 9-3469 94178 11-:3303 11-3304

2 0 2-1790 5-1207 5-5475 59429 59442  6-:2058  6-5524  8-1487
15 3-5088 4-8728 57269 6-4878 6:8453  §-5682 86601 86960
30 3-5430 43474 6-5351 7-0646 72709 79042 84286 §-7014
45 2:3509 44115 47067 53671 59631 7-5711 80423  9-4184
60 17774 3-4721 4-1747 4-2493 47518 7-1492  7-3594  7-5729
75 1-6166 3-1344 3-4195 3-8451 4-3856 63008 6-4937 6-6911
90 1-5896 2-1169 29215 3-7823 42043 4-3141 5-3901  6-3094

4 0 1-5199 2-7692 2-8515 3-1639 42732 44540 4-9258  6-2586
15 2:0254 2-6340 39082 4-3912 46516 58604 6-7877 7-1964
30 1-8171 2-3245 27677  3-5037 47583  5-2835 54233  6-6695
45 1-1521 14970 22618 2-5946 3-1816 3-7140 4-2036  4-5360
60 0-8798 1-1035 2-0738  2-1380 2-3964 27230 3-4775 42530
75 0-8078 1-0008 1-9064 1-9198 2:1940 2-4385 3-2412 37956
90 0-7948 0-9528 1-4501 1-8912 2-1571 2-1937 2-8976  3-1963
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o 1 0 24132 3-1608 5-2635 7-3768  7-5286 83086 85967  9-1287
15 3-2234 4-3045 7-5359 77023  7-8326 87239 10-3675 10-9556
30 3:5605 56770 8-6267 86858  §:8597 9-1394  9-2790 11-8042
45 3-8421 6:0011 86606 9-1040 9-2978 94174 11-2521 11-2521

2 0 2-1548 5-0995 5-5184 5-8798  5-8846 6-:1769  6-5340  8-0607
15 3-4757 4-8707 5-6738 6-4239  6:7952 84882 8-6451  8-6480
30 3-5344 4-3122 6-5210 7-0101  7-2053 79031  8-:3637 8-6073
45 2-3413 43730 4-6688 53617  5-9515 7-5085 80174  9-3327
60 1-7678 3-4439 4-1372  4-2352 47370  7-1393  7-2977  7-4992
75 16073 3-1092 3-3874  3-8277 4-3701 62415 64710 66247
90 1-5804 2-0956 2-8995 3-7643 4-1576 42984  5-3481 62369

4 0 1-5077 2-7575 2-8384 3-1395 42568 44397 4-8897 6-2324
15 2-:0110 2-6218 3-8898 4-3634 4-6236  5-8359  6-7577 7-1556
30 1-8080 23074 2-7484 3-4931 47253 52746 54116 6-6181
45 1-1458 14864 2-2446 2-5846 3-1714 3-6846 4-1936  4-5045
60 0-8748 1-0958 2-0643  2-1218 2-3879 27016  3-4651 42233
75 0-8031 0-9938 1-8918 19107 2:1860 2-4196  3-2281  3-7683
90 0-7902 0-9464 14388 1-8821 2-1492 2-1784 2-8754  3-1832

More explicitly, the elements of K can be expressed as

it ab 0110 1001 b’ 1010
Ki/ = Aes ha thﬁ“w“ + Ais h3 [ Lot + R 1 ”] + An h3 oi'of s
. at b?
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TABLE 10

675

Lowest eight frequency parameters A for simply-supported, super elliptical laminate
with n =10, a/h = 5, and stacking sequence [(0/ — 0),]s

Mode sequence number

A

r

N

n alb 0 1 2 3 4 5 6 7 8
1 1 0 60218 89537 99345 99391 10-0149 13-1332 13-2958 13-9147
15 62257  9-6896 10-2392 11-1064 13-2903 14-1577 16-5516 18-5338
30 6:7141 10-2638 11-2900 12-1627 13-4590 16-:3961 16-9869 17-6483
45 7-0343 99859 12-3593 13-5601 14-5405 14-5416 17-8294 18-2566
2 0 42239 7-1214 7-5015  7-5228  9-2323  9-4220 10-8543 10-8946
15 45858  7-7968  9-4957 97773 11-3612 11-8185 12:9794 14-0286
30 5-5089 83758 84169 10-8490 11-2601 11-4316 11-6121 14-2967
45 6-:2363 6-3032 67571  8-8983 10-3471 11-7060 12-4805 12-9732
60 4-6003 55990 6-4745 85047 9-3387 10-0348 10-8686 13-4758
75 4-1299 52199 64787 79765 82162 95996  9-9458 12-2583
90 3-7627 5-1030 6-5329  6-5888  7-8253 87004 9-2121  9-5456
4 0 33501 45742 46385 59758 6:6055 7-5102 7-6035 7-6410
15 4-8222 5-3614 62609 7-6509 7-6914 7-9651 §-2857  8-5828
30 3-4556 56509 6-1616 69808 75640 7-7748 7-8111  8-1697
45 1-8682 3-7558 4-1840 6-4103 6:5880 7-0229 7-7208  7-8839
60 1-3745 2-8569 3-0535 5-1009 5-2461 6-7557 7-3930  7-5459
75 1-2444 2-6218 2:7276 45052 4-8396 6:4755 69217 7-0295
90 1-1788  2-4477 2-5733  3-8652 47321 53569 6-8588  6-8892
10 1 0 55139 74437 7-5911 8-:3404 8-6276 11-6807 12:3482 12-8785
15 57915 7-9058 8-4019 87520 12:3620 12-6074 14-0926 14-9557
30 6:2049 87032  9-1548 10-0722 12-2543 14-7257 15-5634 15-8216
45 64412 94178 11-3303 11-3304 11-3681 119767 12-7975 15-5033
2 0 37805 6-2058 65524 6-6801 8-2788 83813 8-6247 9-8631
15 41696 69830 85682 86601 §:8967 102420 10-8516 11-4450
30 50301 7-4528 7-9042  §-4286 9-1073 10-0283 10-4381 10-5896
45 4-7067 5-8077 59631 77897 9-4184 10-1696 10-3722 11-1583
60 3-4721 47518 6:0334 73778 75729  9-1544  9-4281 11-9138
75 3-1344 4-3856  6:0940 66911 6-8442 83920 87507 10-5338
90 29215 4-3141 53901 6-1470 6:6350 79821 &-0470 8-:0996
4 0 28515 4-1783 42732 50114 62586 6-3583  6:5740 7-6035
15 4-3912  4-4356 53006 6-6478 7-6509 7-6908 8-1431 §-1776
30 27677 52864 54233 6:0165 66695 7-1884 77748  7-8104
45 14970 3-1816 3-7140 59631 60223 6-5249 6:6994 7-7252
60 1-1035 23964 2:7230 4-7513 47754 6-4272 67814 7-0201
75 1-0008  2-1940 2-4385 42302 4-3850 6-2181 6:5704 67032
90 0-9528 2-1571 2-1937 3-6288 43135 50804 6-4663 6-4686




676

C. C. CHEN ET AL.
TABLE 10 (Continued)

15
30
45

15
30

60
75
90

15
30

60
75
90

5-5153
57954
6-2099
6-4464

3-7817
4-1722
5-0329
4-6688
3-4439
3:1092
2-8995

2-8384
4-3634
2-7484
1-4864
1-0958
0-9938
0-9464

7-3768
7-8326
8:6267
9-4174

61769
6-9883
7-4594
5-8107
47370
4-3701
4-2984

4-1784
4-4362
5-2883
3-1714
2-3879
2-1860
2-1492

7-5927
8-4060
9-1394

11-2521

6-5340
8-4882
7-9031
5-9515
6-0361
6-0960
5-3481

42568
5-:3027
5-4116
3-6846
27016
2-4196
2-1784

1
1

8:3086
8:7239
0-0758
1-2521

6-6822
8-:6451
8:3637
7-7968
7-3836
6-6247
6-1479

50114
6-6508
6-0229
59518
4-7334
4-1937
3-6016

8:5967
12-3664
12-2596
11-3694

8-1903
8-8976
9-0549
9-4174
7-4992
6-8481
6-6361

62324
7-6509
6-6181
6-0247
47370
4-3701
4-2984

11-6801
12:6082
14-7291
11-9846

8-3813
10-2454
9-8884
10-0843
9-1397
8-3936
7-9802

6-3576
7-6908
7-1982
6-4686
6-4289
6-1603
5-0392

12-3501
14-1003
15-5713
12-6109

8-5963
10-8561
10-4439
10-3795

9-4337

8-7239

7-9812

6-5554
8-0926
7-7748
6-7075
6-7857
6-5501
6-4120

12-8138
14-8094
15-8170
15-5087

9-8137
11-3357
10-5931
11-0780
119176
10-5329

8-8012

7-6035
8-1756
7-8104
7-7370
7-0040
6-7043
6-4476
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Accordingly, the elements in M can be further expanded as
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where
awe _ | |0 @i (&, ) 7TE07(E, )
Rq,[xo/!f - J‘J. aéd a’,]e aé/ ang dé dﬂa (22)
A
in which ¢, 0’ = ¢*, ¢, ¢", @", ¢" and i, j=1,2,...,m. In this study, the

integrand R in equation (22) was obtained by using the Gaussian quadrature
method.

3. NUMERICAL STUDIES AND DISCUSSIONS

Numerical results have been obtained using the proposed method for the
symmetrically laminated, super elliptical plates subject to a variety of aspect ratios,
length-to-thickness ratios, super elliptical powers, number of plies, stacking angles,
and boundary conditions. A convergence study has been carried out to ensure a
sufficient number of polynomials is employed in the integration. The results have
been compared with published solutions. The material properties assumed for the
examples of thick laminated plates are: Ei/E, =40, G,/E, = 06, Gx»/E, = 0-5,
Gi; = G, vio = 0-25, and a length-to-thickness ratio of 5.

In the first example, a four-ply laminate with an aspect ratio of 2, stacking
sequence [0/ —0];, and subjected to free, simply-supported, and clamped boundary
conditions have been examined. The stacking angle 6 varies from 0 to 90° with
15° increment. As shown in Table 1, convergence of the lowest four frequency
parameters / has been studied by increasing the degree of polynomials p. It is seen
that the errors between p = 11 and p = 15 are less than 0-4% in all cases and even
smaller for the fundamental modes. Therefore, it is concluded that p = 15 is able
to ensure convergence of results and has been adopted in all examples.

To check the accuracy of results, a comparison of the lowest six frequency
parameters, A, = (u(a/rc)z\/ ph/D,, has been presented in Table 2 for isotropic,
super elliptical, thin plates with a/b = 2, v = 0-3, simply-supported, and clamped
boundary conditions. The results from this analysis show close agreement with
published solutions [2, 3, 7] obtained from classical thin plate theory. In Tables 3
and 4, the present method has been applied to: (i) isotropic, super elliptical, thick
plates with a/b =1, hja=0-3, and v = 0-3; (i1) 16-ply, clamped, circular, thin
laminates of E-glass/epoxy. As anticipated, published results [10, 15] using the
Reddy’s higher-order theory and the classical laminate theory are in excellent
agreement with the results obtained by the present method.

To further understand the complicated effect of plate geometry, boundary
conditions, and stacking angles on the non-dimensional frequency parameter of
the first flexural mode, an extensive study has been conducted. First, the effect of
super elliptical power n on the frequency parameter 4 for thick super elliptical
laminates with a/b = 2 and stacking sequence [45/ — 45]s has been illustrated in
Figure 2. More details of the influence of super elliptical powers n and boundary
conditions on the lowest eight frequency parameters of the same laminated plates
are given in Table 5. From Figure 2, it is clear that the frequency parameters tend
to converge when super elliptical power n is greater than 10 because of the
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similarity between such super ellipse and the rectangle which is the super ellipse
with n approaching infinity. Lower frequency parameters are obtained for higher
super elliptical power n because the increase in n leads to an increase of mass in
the laminated super elliptical plate. Furthermore, stiffer boundary constraints lead
to higher frequency parameters in all modes.

Next, the effect of stacking angle on the non-dimensional frequency parameter
A for the four-ply, thick, super elliptical laminate subject to free, simply-supported,
and clamped boundary conditions is given in Figure 3. Super ellipse powers n of
1, 10, and infinity have been analyzed, with a laminate aspect ratio of 2, and the
layering angle of [0/ — 0];. It is found the frequency parameters for clamped and
simply-supported laminates increase with larger stacking angle. However, for
free super elliptical laminates, the first flexural mode undergoes a transition
from torsional mode to bending mode while the stacking angle increases.
Table 6 provides further insight about this transition and it is noted that the
displacement contours on the mid-plane of free super elliptical laminates are
affected by the stacking angle. One may observe the frequencies increase with
stacking angle for torsional modes but decrease for bending modes for free
elliptical laminates. A similar trend can also be seen on the curves of n = 10 and
n= co.

Figure 4 shows the effect of aspect ratio on the non-dimensional frequency
parameters A; of the thick, super elliptical laminate. Here, super elliptical powers
n of 1 and 10 have been considered and the laminates’ aspect ratios vary from 0-25,
0-5,1-0, 1-5, 2:0, 2-5, 3-0, 3-5, to 4-0. A stacking sequence of [45/ — 45]s was studied
in this example. As expected, the frequencies of super elliptical laminate with n = 1
are higher than those of n = 10. It is also seen that higher frequencies were
obtained for clamped, simply-supported super elliptical laminates with higher
aspect ratios. The increase in aspect ratio leads to the decrease in mass and
consequently increases the frequency. Interestingly, the frequencies of free super
elliptical laminates exhibit the tendency to converge when their aspect ratios are
over 1-5. A similar trend was seen in Narita’s investigation on the free, elliptical,
orthotropic thin plates [5]. It should be addressed that the first flexural modes
compared in Figures 2-4 may not be the lowest modes. This is because some lowest
modes of simply-supported and free laminates are in-plane modes whose
transverse displacement magnitude is far smaller in comparison with the in-plane
displacements. As shown in Table 6, the in-plane modes are completely without
contour lines but with significantly deformed outlines. It is also worth noting that
the first in-plane modes of both simply-supported and free laminates with the same
plate geometry yield similar frequency results since in-plane displacements between
simply-supported and free laminates are similar.

Simply-supported, super elliptical, thick laminates have been studied on the
effect of length-to-thickness ratio on the fundamental frequency parameters by
varying length-to-thickness ratio a/h from 5, 10, 20, 50, 100, to 1000. As can be
seen in Figure 5, the fundamental frequency converges as the laminate becomes
thinner (a/h > 100). Super elliptical laminates with n = 4 and » = 10 show very
similar curves which indicates that the geometric differences are not significant.
Moreover, by comparing the curves of n =2, 4, and 10 in Figure 6, it is found
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that the increase in n does not guarantee a higher fundamental frequency if a/h
is greater than 50.

The following examples consider eight-ply, super elliptical, thick laminates
subjected to free, simply-supported, and clamped boundary conditions. Selected
displacement contours and mode shapes for the lowest four modes of the eight-ply,
super elliptical, thick laminates with a/b =2, a/h =5, and stacking sequence
[(45/ — 45),]s have been plotted. Tables 7 and 8 show the 3-D mode shapes and
the displacement contours on top, middle, and bottom surfaces as the contours
may change along the thickness direction of the thick laminates. A solid line
denotes the displacement contours along the positive z direction while a dashed
line has been used for the negative z direction. The displacement contours of
modes 1 and 3 in simply-supported cases disappear because the in-plane
displacements are dominant in these two modes.

A cursory investigation of the effects of super elliptical power, aspect ratio, and
stacking angle on the frequency parameter / is tabulated in Tables 9 and 10. The
super elliptical power 7 is assumed to be 1 and 10 for Tables 9 and 10 respectively.
The laminates are assumed to be subject to free, simply-supported and clamped
boundary conditions and stacked in the sequence of [(6/—6),];. It is observed that
the effect of stacking angle varies with the aspect ratio and boundary conditions
of the laminates. From the results in Tables 9 and 10, it is found that maximum
frequency parameters occur: (i) for free edge condition, with a stacking angle
between 30 and 45° and an aspect ratio of 1; (ii) for free edge condition, with a
stacking angle between 0 and 45° and an aspect ratio of 2; (iii) for free and
simply-supported edge conditions, with a stacking angle between 0 and 30° and
an aspect ratio of 4; (iv) for simply-supported and clamped edge conditions, with
a stacking angle between 15 and 45° and an aspect ratio of 1; (v) for
simply-supported edge condition, with a stacking angle between 15 and 60° and
an aspect ratio of 2; (vi) for clamped edge condition, with a stacking angle between
45 and 75° and an aspect ratio of 2 or 4. Lastly, the similarity between the results
of eight-ply, thick super elliptical laminates and those of four-ply cases in
preceding examples indicates that the number of plies does not have a pronounced
influence.

4. CONCLUSIONS

The natural frequencies and mode shapes of a class of plates with rounded
corners have been obtained using the p-Ritz method. The plate planform is defined
by a super elliptic function which can form a plate shape varying from a square
or rectangle to a circle or ellipse. Numerical examples for symmetrically laminated
super elliptic plates for free, simply-supported, and clamped boundary conditions
have been considered by varying the fiber stacking sequence and degree of super
ellipticity.

Although the p-Ritz method has been extensively used in plate vibration
problems, in this paper the method has been applied successfully for the first time
to the problem of super elliptical planform for symmetrically laminated plates with
the inclusion of transverse shear deformation effects. This has been done by
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employing Reddy’s higher-order plate deformation theory. The method could be
readily extended to the calculation of natural frequencies and mode shapes of more
complex geometry and boundary conditions, such as a super elliptical plate with
internal line or ring supports.

12.

13.

14.

15.
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