VIBRATION OF SYMMETRICALLY LAMINATED THICK SUPER ELLIPTICAL PLATES

C. C. Chen, C. W. Lim, S. Kitipornchai
Department of Civil Engineering, The University of Queensland, Brisbane, Qld 4072, Australia

AND
K. M. LIEW

Division of Engineering Mechanics, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798
(Received 12 August 1997, and in final form 26 August 1998)

This paper reports a free vibration analysis of thick plates with rounded corners subject to a free, simply-supported or clamped boundary condition. The plate perimeter is defined by a super elliptic function with a power defining the shape ranging from an ellipse to a rectangle. To incorporate transverse shear deformation, the Reddy third-order plate theory is employed. The energy integrals incorporating shear deformation and rotary inertia are formulated and the p-Ritz procedures are used to derive the governing eigenvalue equation. Numerical examples for plates with different shapes and boundary conditions are solved and their frequency parameters, where possible, are compared with known results. Parametric studies are carried out to show the sensitivities of frequency parameters by varying the geometry, fibre stacking sequence, and boundary condition.
(C) 1999 Academic Press

1. INTRODUCTION

The extensive use of fiber-reinforced composites as primary structural components in aerospace, civil, electronic, and many other engineering disciplines has motivated research on the free vibration of laminated plates. Almost all previous research has focused on rectangular laminated plates and none has considered rectangular laminates with rounded corners even though this plate geometry has practical importance in various engineering applications, such as printed circuit boards. The rounded corners are advantageous in helping to diffuse and dilute stress concentrations at the otherwise sharp corners. The shape of rectangular laminated plates with rounded corners can be described by a super elliptical function. Varying the super elliptic power in the super elliptical function can generate a plate shape ranging from a square or rectangular to a circle or ellipse.

The free vibration characteristics of super elliptical plates, including elliptical and circular plates, can be found in many earlier works [1-6]. Most previous works considered the free vibration of circular or elliptical plates in polar or elliptic co-ordinates which are naturally unsuitable for laminated plates with fibrous directions coinciding with the Cartesian co-ordinate system. Wang et al. [7] presented a complete investigation of free vibration and buckling analyses of thin super elliptical plates using the p-Ritz method and the classical thin plate theory. This work was further expanded by Lim and Liew [8] and Lim et al. [9] to isotropic perforated and composite laminated super elliptical plates, respectively. To examine the effects of transverse shear deformation, Liew et al. [10] extended their previous works [7-9] to isotropic thick super elliptical plates by incorporating Reddy's higher-order plate theory [11] in the p-Ritz method for free vibration solutions.
Although the classical thin plate theory provides an easy way to analyze the thin composite laminates [9], this theory has many drawbacks because of the Kirchhoff assumptions which lead to zero transverse shear strains and zero transverse normal strain. As laminated composite panels are often weaker in shear mode, the transverse shear strain must be taken into account. The first-order shear deformation theory for composite laminates proposed by Yang et al. [12] gained its popularity because it provides an easy way to incorporate the effects of transverse shear. In this theory, shear correction factors are used to compensate for the assumption made of zero transverse shear strain on the top and bottom surfaces of the laminated plate. However, for laminated composite panels, the shear correction factor depends on various factors and is unknown for arbitrarily composite laminates. The requirement for shear correction factors in the first-order shear deformation theory has made it less attractive for many applications.
In an effort to circumvent the problems of shear correction factors, various second and higher-order shear deformation theories have been developed. The most popular one was the higher-order shear deformation theory proposed by Reddy [11]. The displacement field of Reddy's higher-order shear deformation theory accommodates parabolic variation of transverse shear strains and vanishing transverse shear stresses on the top and bottom of a general laminate. Therefore, no shear correction factor is required in this theory. The theory has been shown to provide reasonably accurate free vibration solutions for moderately thick laminates $[13,14]$.
This paper examines the free vibration behavior of moderately thick symmetric laminates of super elliptical planform. This investigation forms a natural extension of the work of Liew et al. [10] from the isotropic case to a laminated panel. Because transverse shear deformation plays an important role in the analysis of composite laminates, Reddy's higher-order plate theory has been used to formulate the energy integral functional so that no shear correction factor is needed. The p-Ritz procedure is used to minimize this energy integral functional to arrive at the governing eigenvalue equation. To illustrate the method, several numerical examples of super elliptical symmetrically laminated plates with different plate geometries and boundary conditions are solved. Parametric studies are also carried

Figure 1. Geometric definitions of laminated super elliptical plates.
out to examine the effects of plate geometry, boundary conditions, super elliptical power, aspect ratio, length-to-thickness ratio, and fibre stacking sequences on the vibration frequency parameters.

2. MATHEMATICAL FORMULATION

The thick super elliptical laminated plate and associated reference Cartesian co-ordinate system are shown in Figure 1. The dimensions of the laminated plate

Table 1

Convergence of the frequency parameter, $\lambda=\omega a b \sqrt{\rho h / D_{0}}$, for the super elliptical plate with $a / b=2, a / h=5, n=10$, and stacking sequence $[30 /-30]$ s

Boundary condition	Mode sequence number								
	p	1	2	3	4	5	6	7	8
Free	7	$3 \cdot 1476$	$4 \cdot 1104$	$6 \cdot 1582$	6.5514	6.8263	$7 \cdot 9043$	8.4316	8.5328
	9	$3 \cdot 1463$	$4 \cdot 1087$	$6 \cdot 1509$	$6 \cdot 5466$	$6 \cdot 8194$	$7 \cdot 9043$	8.4292	$8 \cdot 5103$
	11	$3 \cdot 1460$	$4 \cdot 1083$	$6 \cdot 1494$	$6 \cdot 5458$	6.8185	$7 \cdot 9042$	$8 \cdot 4287$	$8 \cdot 5081$
	13	$3 \cdot 1460$	$4 \cdot 1083$	$6 \cdot 1492$	$6 \cdot 5456$	$6 \cdot 8183$	$7 \cdot 9042$	$8 \cdot 4286$	$8 \cdot 5076$
	15	$3 \cdot 1460$	$4 \cdot 1083$	$6 \cdot 1491$	$6 \cdot 5456$	$6 \cdot 8183$	$7 \cdot 9042$	$8 \cdot 4286$	$8 \cdot 5075$
Simplysupported	7	$4 \cdot 7687$	7.0959	7.9043	8.4316	$9 \cdot 1080$	10.0296	$10 \cdot 1051$	$11 \cdot 1485$
	9	4.7286	7.0227	$7 \cdot 9043$	8.4292	$9 \cdot 1075$	$9 \cdot 8742$	10.0286	$10 \cdot 0681$
	11	$4 \cdot 7256$	7.0172	$7 \cdot 9042$	$8 \cdot 4287$	$9 \cdot 1074$	$9 \cdot 8029$	10.0284	$10 \cdot 0632$
	13	$4 \cdot 7247$	7.0156	$7 \cdot 9042$	$8 \cdot 4286$	$9 \cdot 1073$	9.7956	10.0283	$10 \cdot 0616$
	15	$4 \cdot 7244$	$7 \cdot 0151$	$7 \cdot 9042$	$8 \cdot 4286$	$9 \cdot 1073$	9.7947	10.0283	$10 \cdot 0614$
Clamped	7	$6 \cdot 1453$	$8 \cdot 3177$	11.4036	$13 \cdot 1248$	$15 \cdot 3118$	17.5963	18.5385	19.4088
	9	6.1019	8.2274	$11 \cdot 1160$	11.3441	$13 \cdot 3422$	14.3497	16.2542	17.5993
	11	6.0992	8.2211	10.9825	11.3373	$13 \cdot 1520$	14.0344	15.8044	17.4993
	13	$6 \cdot 0983$	8-2194	$10 \cdot 9710$	11.3358	13•1401	14.0117	15.7639	$17 \cdot 1540$
	15	$6 \cdot 0980$	8-2190	$10 \cdot 9698$	11.3355	$13 \cdot 1380$	14.0097	15.7597	$17 \cdot 1133$

Table 2
Comparison of the frequency parameters, $\lambda_{1}=\omega(a / \pi)^{2} \sqrt{\rho h / D_{0}}$, for the thin, super elliptical, isotropic, plate with $a \mid b=2$

Source	Mode sequence number					
	1	2	3	4	5	6
$n=1$, simply-supported plate						
Reference [2]	$5 \cdot 358$	-	-	-	-	-
Reference [7]	$5 \cdot 355$	$9 \cdot 582$	$15 \cdot 533$	$18 \cdot 704$	$23 \cdot 298$	$25 \cdot 439$
Present	$5 \cdot 355$	$9 \cdot 579$	$15 \cdot 529$	18.701	$23 \cdot 290$	$25 \cdot 429$
$n=1$, clamped plate						
Reference [3]	11.097	$16 \cdot 005$	22.684	28.317	31.203	$35 \cdot 681$
Reference [7]	$11 \cdot 100$	16.008	22.689	28.327	31.205	$35 \cdot 683$
Present	11.094	16.005	22.681	28.304	31-197	35.671
$n=10$, simply-supported plate						
Reference [7]	4.986	7.969	$12 \cdot 955$	16.989	19.953	20.003
Present	4.985	7.967	$12 \cdot 966$	16.983	$19 \cdot 958$	19.987
$n=10$, clamped plate						
Reference [7]	9.951	$12 \cdot 897$	$18 \cdot 132$	$25 \cdot 743$	25.926	$28 \cdot 805$
Present	9.962	$12 \cdot 904$	$18 \cdot 154$	$25 \cdot 701$	25.930	$28 \cdot 809$

are assumed to be a, b, and h in the x, y, and z directions. The periphery of the super ellipse is defined by the super elliptical function

$$
\begin{equation*}
\left(\frac{2 x}{a}\right)^{2 n}+\left(\frac{2 y}{b}\right)^{2 n}=1 \tag{1}
\end{equation*}
$$

in which n is the power of super ellipse. The shape becomes an ellipse if the super elliptical power n is 1 . Interestingly, if the power n is continually increased, the plate becomes a rectangle with four rounded corners. Higher values of n lead to a smaller corner radius. The plate becomes a rectangle as n approaches infinity.

The laminae are assumed to possess a plane of elastic symmetry parallel to the $x y$ plane and are stacked symmetrically with respect to the middle surface of the laminate. The vibration frequencies of the super elliptical laminate subjected to a variety of boundary conditions, aspect ratios, length-to-thickness ratios, super elliptical powers, number of plies, and stacking angles are to be determined.

2.1. GOVERNING EQUATIONS

Let u, v, and w be the in-plane and out-of-plane displacement components of a general point of the thick super elliptical laminated plate. The displacement field
of a laminated plate based on Reddy's higher-order shear deformation theory can be assumed as:

$$
\begin{gather*}
u(x, y, z, t)=u_{0}(x, y, t)+z \phi_{x}(x, y, t)-\frac{4 z^{3}}{3 h^{2}}\left(\phi_{x}(x, y, t)+\frac{\partial w(x, y, t)}{\partial x}\right) \\
v(x, y, z, t)=v_{0}(x, y, t)+z \phi_{y}(x, y, t)-\frac{4 z^{3}}{3 h^{2}}\left(\phi_{y}(x, y, t)+\frac{\partial w(x, y, t)}{\partial y}\right), \\
w(x, y, z, t)=w_{0}(x, y, t) \tag{2}
\end{gather*}
$$

where $u_{0}, v_{0}, w_{0}, \phi_{x}$, and ϕ_{y} are the displacement and rotation components of the mid-plane of the laminated plate in the Cartesian co-ordinate system.

In linear elastic analysis, the stress-strain relationship for the k th lamina in the Cartesian co-ordinate system is given by

$$
\begin{equation*}
[\sigma]_{k}=[\bar{Q}]_{k}[\xi]_{k}, \tag{3}
\end{equation*}
$$

Table 3

Comparison of frequency parameters, $\lambda_{2}=\omega a \sqrt{\rho / E}$, for the isotropic, super elliptical, thick plate with $a / b=1$ and $h / a=0.3$

Source	Mode sequence number					
	1	2	3	4	5	6
$n=1$, free plate						
Reference [10]	0.6192	0.6193	1.0298	1-3704	$1 \cdot 3704$	$2 \cdot 1784$
Present	0.6192	0.6193	1.0298	$1 \cdot 3704$	$1 \cdot 3707$	$2 \cdot 1784$
$n=10$, free plate						
Reference [10]	$0 \cdot 3898$	0.5734	0.7151	0.9783	0.9783	$1 \cdot 6874$
Present	$0 \cdot 3898$	0.5734	0.7151	0.9780	0.9783	$1 \cdot 6874$
$n=1$, simply-supported plate						
Reference [10]	0.5785	1.5291	1.5291	$2 \cdot 6301$	$2 \cdot 6301$	$2 \cdot 9091$
Present	$0 \cdot 5784$	1.5291	1.5291	$2 \cdot 6301$	$2 \cdot 6301$	$2 \cdot 9091$
$n=10$, simply-supported plate						
Reference [10]	0.5532	1.3429	1.3429	$2 \cdot 0376$	2.4412	$2 \cdot 5420$
Present	$0 \cdot 5530$	1.3429	1.3429	$2 \cdot 0377$	2.4412	$2 \cdot 5420$
$n=1$, clamped plate						
Reference [10]	$1 \cdot 1216$	$2 \cdot 1616$	$2 \cdot 1616$	$3 \cdot 2944$	$3 \cdot 2948$	$3 \cdot 6893$
Present	$1 \cdot 1216$	2.1615	2.1617	$3 \cdot 2948$	$3 \cdot 2951$	$3 \cdot 6897$
$n=10$, clamped plate						
Reference [10]	0.9862	1.8839	1.8839	$2 \cdot 6440$	$3 \cdot 1176$	$3 \cdot 1467$
Present	0.9863	1.8845	1.8845	$2 \cdot 6455$	$3 \cdot 1187$	$3 \cdot 1478$

Table 4

Comparison of frequency parameters, $\lambda_{3}=\omega a^{2} \sqrt{\rho h / D_{0}}$, for the clamped, thin, laminated, circular plate of E-glass/epoxy with stacking sequence $\left[(\theta /-\theta)_{4}\right]_{\mathrm{s}}$

Source	θ	Mode sequence number							
		1	2	3	4	5	6	7	8
Reference [15]	0	$32 \cdot 859$	$60 \cdot 062$	$75 \cdot 686$	99.436	$109 \cdot 43$	139.76	149.39	154.08
Present		32.860	$60 \cdot 057$	$75 \cdot 688$	99.426	$109 \cdot 41$	139.76	$149 \cdot 37$	154.05
Reference [15]	15	$32 \cdot 871$	61.208	$74 \cdot 842$	101.29	$110 \cdot 72$	137.67	$151 \cdot 62$	$156 \cdot 87$
Present		$32 \cdot 871$	61.203	$74 \cdot 843$	101.28	110.71	$137 \cdot 66$	151.59	$156 \cdot 85$
Reference [15]	30	32.893	$64 \cdot 192$	72.438	$106 \cdot 10$	113.09	132.43	157.76	$162 \cdot 28$
Present		32.893	$64 \cdot 186$	72.438	106.09	113.07	$132 \cdot 42$	157.73	162.26
Reference [15]	45	$32 \cdot 904$	$67 \cdot 000$	$69 \cdot 908$	$109 \cdot 88$	$113 \cdot 80$	$128 \cdot 85$	162.76	164.33
Present		$32 \cdot 904$	66.996	$69 \cdot 904$	$109 \cdot 87$	113.78	$128 \cdot 84$	162.74	$164 \cdot 30$

in which, $[\sigma]_{k},[\xi]_{k}$ and $[\bar{Q}]_{k}$ are stress, strain, and moduli of the k th lamina in the reference Cartesian co-ordinate. Here, $\left(\bar{Q}_{i j}\right)_{k}$ are obtained from the transform matrix with fibre angle θ_{k} and the stiffness constants, $\left(Q_{i j}\right)_{k}$, which are related to the material properties, $E_{1}, E_{2}, v_{12}, v_{21}, G_{12}, G_{13}, G_{23}$, of each ply.

Neglecting the effect of transverse normal stress σ_{z}, for a laminated plate consisting of N orthotropic laminae, the total strain energy for the entire laminated plate is given by,

$$
\begin{equation*}
U=\frac{1}{2} \sum_{k=1}^{N} \iint_{A} \int_{h_{k-1}}^{h_{k}}\left(\sigma_{x} \varepsilon_{x}+\sigma_{y} \varepsilon_{y}+\sigma_{x z} \varepsilon_{x z}+\sigma_{y z} \varepsilon_{y z}+\sigma_{x y} \varepsilon_{x y}\right)_{k} \mathrm{~d} z \mathrm{~d} A \tag{4}
\end{equation*}
$$

Similarly, the expression for total kinetic energy T due to the free vibration of laminated plate is,

$$
\begin{equation*}
\left.T=\frac{1}{2} \sum_{k=1}^{N} \iiint_{A}^{h_{k}} \int_{h_{k-1}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\left(\frac{\partial v}{\partial t}\right)^{2}+\frac{\partial w}{\partial t}\right)^{2}\right] \mathrm{d} z \mathrm{~d} A, \tag{5}
\end{equation*}
$$

in which ρ_{k} is the mass density of the k th lamina.
As $[\bar{Q}]_{k}$ changes from layer to layer, it is possible to obtain the equivalent moduli for the entire plate,

$$
\begin{equation*}
\left(A_{i j}, B_{i j}, D_{i j}, E_{i j}, F_{i j}, H_{i j}\right)=\sum_{k=1}^{N} \int_{h_{k}}^{h_{k+1}}\left(\bar{Q}_{i j}\right)_{k}\left(1, z, z^{2}, z^{3}, z^{4}, z^{6}\right) \mathrm{d} z . \tag{6}
\end{equation*}
$$

Here, all $B_{i j}$ and $E_{i j}$ vanish if the laminae are stacked symmetrically about the mid-plane. For the free vibration problem, the deflection and rotation functions of the laminate mid-plane are periodic in time. Therefore, for small amplitude vibration, one can assume the displacement and rotation components to be expressed in the following forms:

$$
\begin{align*}
& u_{0}(x, y, t)=U(x, y) \sin \omega t \\
& v_{0}(x, y, t)=V(x, y) \sin \omega t \\
& w_{0}(x, y, t)=W(x, y) \sin \omega t \\
& \phi_{x}(x, y, t)=\Theta_{u}(x, y) \sin \omega t \\
& \phi_{y}(x, y, t)=\Theta_{v}(x, y) \sin \omega t \tag{7}
\end{align*}
$$

Figure 2. Effect of super elliptical power n on the frequency parameter λ of super elliptical laminate with $a / h=5, a / b=2$, and stacking sequence $[45 /-45]$ s.

Table 5

Lowest eight frequency parameters λ for the super elliptical plates with a/h=5, $a / b=2$, and stacking sequence $[45 /-45]_{\mathrm{s}}$

Boundary n condition	Mode sequence number							
	1	2	3	4	5	6	7	8
1 Free	$2 \cdot 5983$	5•5466	$5 \cdot 6871$	$6 \cdot 2363$	$6 \cdot 7571$	$8 \cdot 8092$	$8 \cdot 9605$	$10 \cdot 3471$
Simply-sup.	5•8709	6.2363	6.7571	$8 \cdot 2904$	$10 \cdot 3471$	10.9209	$12 \cdot 2416$	$12 \cdot 4805$
Clamped	7-2989	$9 \cdot 6234$	12.2365	$14 \cdot 1092$	15.0761	16.7466	18.0747	19.4689
2 Free	$2 \cdot 3905$	$4 \cdot 4875$	$5 \cdot 2666$	$5 \cdot 2702$	$6 \cdot 1986$	7.5522	$8 \cdot 1619$	9.5922
Simply-sup.	$5 \cdot 4615$	6•1986	6•1986	$9 \cdot 5922$	$9 \cdot 8779$	11.2300	11.5093	12.0360
Clamped	6.7518	$8 \cdot 6016$	10.9800	13.0685	13.7594	14.8506	16.6438	17.0408
4 Free	$2 \cdot 3058$	$4 \cdot 1015$	$4 \cdot 8653$	$5 \cdot 1628$	6.0206	7.0087	7.8226	$8 \cdot 8646$
Simply-sup.	$5 \cdot 4046$	$6 \cdot 0206$	$7 \cdot 2586$	$9 \cdot 4409$	$9 \cdot 6891$	$10 \cdot 5042$	$11 \cdot 3674$	$11 \cdot 4598$
Clamped	$6 \cdot 6521$	$8 \cdot 3929$	10.7465	12.8891	$13 \cdot 5156$	14.3640	$16 \cdot 4075$	16.4124
6 Free	$2 \cdot 2827$	$4 \cdot 0093$	4.7657	$5 \cdot 1422$	5.9833	$6 \cdot 8665$	7.7474	8.6656
Simply-sup.	5.4021	5.9833	$7 \cdot 2468$	$9 \cdot 4236$	$9 \cdot 6707$	$10 \cdot 2982$	11.2774	11.3542
Clamped	$6 \cdot 6404$	8.3662	10.7158	12.8724	13.4803	14.2955	$16 \cdot 3062$	16.3867
8 Free	$2 \cdot 2730$	3.9732	4.7262	$5 \cdot 1341$	5.9696	$6 \cdot 8088$	7.7201	8.5827
Simply-sup.	$5 \cdot 4026$	$5 \cdot 9696$	$7 \cdot 2459$	$9 \cdot 4197$	$9 \cdot 6681$	$10 \cdot 2128$	$11 \cdot 1988$	$11 \cdot 3522$
Clamped	$6 \cdot 6374$	8.3592	10.7077	12.8688	13.4708	14.2773	16.2767	16.3823
10 Free	$2 \cdot 2680$	3.9554	$4 \cdot 7067$	$5 \cdot 1300$	5.9631	6.7798	7.7073	$8 \cdot 5401$
Simply-sup.	$5 \cdot 4032$	$5 \cdot 9631$	$7 \cdot 2465$	$9 \cdot 4184$	9.6685	$10 \cdot 1696$	$11 \cdot 1583$	$11 \cdot 3520$
Clamped	$6 \cdot 6364$	$8 \cdot 3568$	$10 \cdot 7053$	12.8678	13.4678	14.2712	16.2662	$16 \cdot 3823$
20 Free	$2 \cdot 2606$	3.9301	$4 \cdot 6786$	$5 \cdot 1235$	5.9543	6.7376	7.6903	8.4764
Simply-sup.	$5 \cdot 4051$	5.9543	7.2499	$9 \cdot 4175$	9.6717	10•1066	11.0989	11.3539
Clamped	6.5836	8.3219	10.6675	12.7623	13.4078	14.2257	$16 \cdot 2162$	$16 \cdot 3286$
∞ Free	$2 \cdot 2579$	3.9213	$4 \cdot 6688$	$5 \cdot 1210$	5.9515	6.7226	7.6849	$8 \cdot 4527$
Simply-sup.	5.4064	5.9515	7.2533	$9 \cdot 4174$	$9 \cdot 6749$	10.0843	11.0780	11.3554
Clamped	$6 \cdot 6352$	8.3544	10.7017	12.8668	13.4632	14.2651	16.2554	16.3739

Substituting equation (7) into equations (4) and (5) yields the maximum strain energy $U_{\max }$ and the maximum kinetic energy $T_{\max }$ during a vibratory cycle. In the Rayleigh-Ritz method, the governing equation for the free vibration of laminated plate can be established by minimizing the following governing total energy functional,

$$
\begin{equation*}
\Pi=U_{\max }-T_{\max } . \tag{8}
\end{equation*}
$$

The Rayleigh-Ritz method requires the solution to be in the form of a series containing unknown parameters. As a result, the non-dimensional displacement
and rotation components can be approximated by assuming a finite set of unknown parameters in the functionals.

$$
\begin{align*}
& U(\xi, \eta)=\sum_{i=1}^{m} c_{i}^{u} \varphi_{i}^{u}(\xi, \eta) \\
& V(\xi, \eta)=\sum_{i=1}^{m} c_{i}^{v} \varphi_{i}^{v}(\xi, \eta), \\
& W(\xi, \eta)=\sum_{i=1}^{m} c_{i}^{w} \varphi_{i}^{w}(\xi, \eta), \\
& \Theta_{u}(\xi, \eta)=\sum_{i=1}^{m} c_{i}^{\theta_{u}} \varphi_{i}^{\theta_{u}}(\xi, \eta), \\
& \Theta_{v}(\xi, \eta)=\sum_{i=1}^{m} c_{i}^{\theta_{v}} \varphi_{i}^{\theta_{v}}(\xi, \eta), \tag{9}
\end{align*}
$$

Figure 3. Effect of stacking angle θ on the frequency parameter λ_{3} of super elliptical laminate with $a / h=5, a / b=2$, and stacking sequence. $[\theta /-\theta] \mathrm{s} .-, n=1$, free; $-\square-, n=1$, ss; $-\mathbf{\Delta}$-, $n=1$, clamp $;-\diamond-, n=10$, free; $-\square-, n=10$, ss; $-\triangle-, n=10$, clamp; $-\times-, n=\infty$, free; -*-, $n=\infty$, free;,$-+- n=\infty$, clamp.

Table 6
Displacement contours for lowest four frequencies of free, super elliptical laminate with $n=1$ and $10, a / h=5$, and stacking sequence $[\theta /-\theta]_{\mathrm{s}}$

where $\varphi_{i}^{u}, \varphi_{i}^{v}, \varphi_{i}^{w}, \varphi_{i}^{\theta_{u}}$, and $\varphi_{i}^{\theta_{v}}$ are the shape functions and $c_{i}^{u}, c_{i}^{v}, c_{i}^{w}, c_{i}^{\theta_{u}}$, and $c_{i}^{\theta_{v}}$ are the associated unknown coefficients. ξ and η denote the non-dimensional co-ordinates given by

$$
\begin{equation*}
\xi=\frac{x}{a}, \quad \eta=\frac{y}{b} \tag{10}
\end{equation*}
$$

The problem now lies in finding suitable shape functions that are general for any boundary conditions and plate geometries.

2.2. p-RitZ PROCEDURES

In the p-Ritz procedures, the shape functions, $\varphi_{i}^{u}, \varphi_{i}^{v}, \varphi_{i}^{w}, \varphi_{i}^{\theta_{u}}$, and $\varphi_{i}^{\theta_{v}}$ are assumed to be the product of two-dimensional polynomials and basic functions as follows:

$$
\begin{equation*}
\varphi_{i}^{\kappa}(\xi, \eta)=f_{i}(\xi, \eta) \varphi_{b}^{\kappa}(\xi, \eta) \tag{11}
\end{equation*}
$$

in which $\kappa=u, v, w, \theta_{u}$ and θ_{v}. The functional $f_{i}(\xi, \eta)$ can be constructed by a two-dimensional polynomial series

$$
\begin{equation*}
\sum_{i=1}^{m} f_{i}(\xi, \eta)=\sum_{q=0}^{p} \sum_{i=0}^{q} \xi^{q-i} \eta^{i} \tag{12}
\end{equation*}
$$

Therefore, the number of terms m in equation (9) becomes

$$
\begin{equation*}
m=\frac{(p+1)(p+2)}{2}, \tag{11}
\end{equation*}
$$

where p is the highest degree of the set of two-dimensional polynomials.
To satisfy the geometry of a laminated plate, the basic function $\varphi_{b}^{k}(\xi, \eta)$ in equation (9) is assumed to be the product of boundary expressions of all supporting edges. The basic function, for the super elliptical laminated plate with super elliptic power n, can be assumed as

$$
\begin{equation*}
\varphi_{b}^{\kappa}(\xi, \eta)=\left[(2 \xi)^{2 n}+(2 \eta)^{2 n}-1\right]^{\rho^{\kappa}}, \tag{14}
\end{equation*}
$$

in which Ω^{κ} represents the associated basic power of boundary expression to ensure automatic satisfaction of the boundary condition of the supporting edge. They are assumed to be 0,1 , and 2 depending on whether the boundary condition of the supporting edge is free, simply supported, or clamped. Note that the simply-supported edges are subject to constraint in the z direction only, i.e., the soft simply-supported condition.

Figure 4. Effect of aspect ratio a / b on the frequency parameter λ_{3} of super elliptical laminate with $a / h=5$, and stacking sequence $[45 /-45]_{s} .-—, n=1$, free; $-\square-, n=1$, ss; $-\mathbf{\Delta}-n=1$, clamp; $-\diamond-, n=10$, free; $-\square-, n=10$, ss; $-\triangle-, n=10$, clamp.

Figure 5. Effect of length-to-thickness ratio a / h on the frequency parameter λ of simply-supported, super elliptical laminate with $a / b=2$ and stacking sequence $[45 /-45]_{s} .-\diamond-$, $n=1 ;-\bigcirc-, n=2 ;-\triangle-, n=4 ;-\square-, n=10$.

Substituting equation (9) into equation (7) and minimizing the total energy functional Π with respect to the unknown coefficients yields the governing eigenvalue equation

$$
\begin{equation*}
\left\{[\mathbf{K}]-\lambda^{2}[\mathbf{M}]\right\}\{c\}=\{0\}, \tag{15}
\end{equation*}
$$

where $\{c\}=\left\{c^{u} c^{v} c^{w} a c^{\theta_{u}} b c^{\theta_{v}}\right\}^{T}$.
If all laminae are made of the same material, the non-dimensional frequency parameter λ can be expressed in terms of frequency, plate dimensions, D_{0}, and mass density per unit volume ρ as

$$
\begin{equation*}
\lambda=\omega a b \sqrt{\frac{\rho h}{D_{0}}}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{0}=\frac{E_{11} h^{3}}{12\left(1-v_{12} v_{21}\right)} . \tag{17}
\end{equation*}
$$

The vibration frequencies and mode shapes of super elliptical laminates are then obtained by solving λ. In addition, the stiffness matrix K and the mass matrix M in equation (15) are given by

$$
[\mathbf{K}]=\frac{1}{D_{0}}\left[\begin{array}{ccccc}
{\left[\mathbf{K}^{w_{w}}\right]} & {\left[\mathbf{K}^{w}\right]} & 0 & 0 & 0 \tag{18}\\
& {\left[\mathbf{K}^{w v}\right]} & 0 & 0 & 0 \\
& & {\left[\mathbf{K}^{w w}\right]} & {\left[\mathbf{K}^{w \theta_{u}}\right]} & {\left[\mathbf{K}^{w \theta_{0}}\right]} \\
& \text { sym. } & & {\left[\mathbf{K}^{\theta_{\theta_{u}} \theta_{u}}\right]} & {\left[\mathbf{K}^{\theta_{u} \theta_{u}}\right]} \\
& & & & {\left[\mathbf{K}^{\theta_{v} \theta_{u}}\right]}
\end{array}\right]
$$

Table 7
Displacement contours and mode shapes for lowest four frequencies of elliptical laminate with $a / b=2, a / h=5$, and stacking sequence $\left[(45 /-45)_{2}\right]_{\mathrm{s}}$

Boundary condition	Mode number	Displacement contour			3-D mode shape	Frequencs paramete]
		$\begin{aligned} & \text { Top } \\ & \text { surface } \end{aligned}$	Middle surface	Bottom surface		
Free	1					2.6506
	2					5.9443
	3					6.2079
	4)	,			6.2363
Simply-sup	d 1					6.2363
	2		$\left(\left(\frac{1}{2}\right)\right)$	$($	K_{8}	6.3032
	3)			(1)	6.7571
	4					8.8983
Clamped	1	(kin)	(7.7140
	2	(8)	(S)	(1)	4	10.2645
	3	$\rho \operatorname{sic}$				13.1000
	4	(aves)	(andin)			14.9326

Table 8
Displacement contours and mode shapes for lowest four frequencies of super elliptical laminate with $n=10, a / b=2, a / h=5$, and stacking sequence $\left[(45 /-45)_{2}\right]$ s

Boundary condition	Mode number	Displacement contour			$\begin{gathered} 3-D \text { mode } \\ \text { shape } \end{gathered}$	Frequenc paramete
		$\begin{aligned} & \text { Top } \\ & \text { surface } \end{aligned}$	Middle surface	Bottom surface		
Free	1		$\sqrt{4 N}$			2.3509
	2	שuMy				4.4115
	3	3				4.7067
	4					5.3671
Simply-sup	d 1	2	2	2		4.7067
	2	sivizi	Sixiz			5.8077
	3	7	7	\square		5.9631
	4					7.7897
Clamped	1	(sen)		(2)		7.0291
	2		K			8.9015
	3	(ase	霜	CK		11.4386
	4	rscer	semis	rewid		13.6623

and

Table 9
Lowest eight frequency parameters λ for free elliptical laminate with $a / h=5$ and stacking sequence $\left[(\theta /-\theta)_{2}\right]$ s

n	a / b	θ	Mode sequence number							
			1	2	3	4	5	6	7	8
1	1	0	$3 \cdot 8355$	$3 \cdot 8529$	7.9348	$8 \cdot 2319$	9.9345	9.9391	$10 \cdot 0149$	11.8522
		15	$3 \cdot 8740$	$6 \cdot 5375$	8.4631	$10 \cdot 2392$	$10 \cdot 8724$	$11 \cdot 1064$	12.2286	13.5895
		30	3.9148	$8 \cdot 3484$	9.8057	10.2638	12.0214	$12 \cdot 1627$	12.4177	15.7178
		45	3.9542	$8 \cdot 8445$	9.9859	11.5871	11.9448	$12 \cdot 4695$	14.5405	14.5416
	2	0	3.3359	$5 \cdot 3822$	6.7392	$7 \cdot 1214$	7.2982	7.5228	8.0060	9.4220
		15	$4 \cdot 7554$	$5 \cdot 3504$	7.4126	$8 \cdot 2400$	8.7515	9.4957	10.6249	11.7389
		30	3.7594	6.0876	$7 \cdot 5448$	$8 \cdot 3758$	8.9408	9.5433	10.8490	11.2601
		45	$2 \cdot 6506$	5.9443	$6 \cdot 2079$	$6 \cdot 2363$	6.7571	$9 \cdot 5001$	$9 \cdot 6956$	$10 \cdot 3471$
		60	$2 \cdot 1292$	$4 \cdot 6003$	4.7504	$5 \cdot 5990$	5.9170	7.7753	$9 \cdot 3017$	9.3387
		75	1.9867	$4 \cdot 1299$	4.3715	4.9561	$5 \cdot 2199$	7.0919	$8 \cdot 1632$	$8 \cdot 2162$
		90	1.9576	$3 \cdot 1600$	$3 \cdot 7627$	$4 \cdot 2841$	$5 \cdot 1030$	$5 \cdot 7620$	$6 \cdot 5888$	6.9207
	4	0	2.0750	$3 \cdot 1010$	$3 \cdot 3501$	$3 \cdot 7560$	$4 \cdot 6385$	$4 \cdot 8308$	5.4232	$6 \cdot 6055$
		15	2.5733	3.0238	$4 \cdot 3726$	5.3614	$5 \cdot 4861$	$6 \cdot 3102$	7.5503	7.7521
		30	$2 \cdot 1160$	$2 \cdot 9655$	$3 \cdot 4556$	$3 \cdot 8548$	$5 \cdot 4207$	$5 \cdot 7005$	$6 \cdot 1616$	$7 \cdot 3944$
		45	1.3891	1.8632	2.9139	2.9307	3.7558	4-1840	$4 \cdot 5754$	$4 \cdot 9846$
		60	1.0817	$1 \cdot 3745$	$2 \cdot 3673$	$2 \cdot 7859$	$2 \cdot 8569$	$3 \cdot 0535$	$3 \cdot 8250$	$4 \cdot 6572$
		75	0.9993	$1 \cdot 2444$	2.2028	$2 \cdot 5095$	$2 \cdot 6218$	2.7276	$3 \cdot 5784$	$4 \cdot 2236$
		90	0.9835	$1 \cdot 1788$	1.9636	2•1667	$2 \cdot 4477$	$2 \cdot 5733$	$3 \cdot 4263$	$3 \cdot 5188$
10	1	0	$2 \cdot 4422$	$3 \cdot 1796$	5.3338	7.4437	7.5641	8.3404	8.6276	9.2342
		15	$3 \cdot 2413$	$4 \cdot 3501$	7.6215	7.7276	7.9058	8.7520	$10 \cdot 4285$	11.0553
		30	$3 \cdot 5714$	$5 \cdot 7322$	8.6906	$8 \cdot 7032$	8.9507	$9 \cdot 1548$	$9 \cdot 3485$	11.8926
		45	$3 \cdot 8418$	$6 \cdot 0597$	8.7538	$9 \cdot 1791$	$9 \cdot 3469$	9.4178	11.3303	11.3304
	2	0	$2 \cdot 1790$	$5 \cdot 1207$	$5 \cdot 5475$	5.9429	5.9442	$6 \cdot 2058$	$6 \cdot 5524$	$8 \cdot 1487$
		15	$3 \cdot 5088$	$4 \cdot 8728$	$5 \cdot 7269$	6.4878	$6 \cdot 8453$	$8 \cdot 5682$	8.6601	$8 \cdot 6960$
		30	$3 \cdot 5430$	$4 \cdot 3474$	$6 \cdot 5351$	$7 \cdot 0646$	7.2709	7.9042	8.4286	8.7014
		45	$2 \cdot 3509$	$4 \cdot 4115$	$4 \cdot 7067$	$5 \cdot 3671$	5.9631	7.5711	8.0423	9.4184
		60	1.7774	$3 \cdot 4721$	$4 \cdot 1747$	$4 \cdot 2493$	$4 \cdot 7518$	$7 \cdot 1492$	7.3594	7.5729
		75	1.6166	3•1344	3.4195	$3 \cdot 8451$	$4 \cdot 3856$	$6 \cdot 3008$	$6 \cdot 4937$	$6 \cdot 6911$
		90	1.5896	$2 \cdot 1169$	2.9215	$3 \cdot 7823$	$4 \cdot 2043$	$4 \cdot 3141$	$5 \cdot 3901$	6.3094
	4	0	1.5199	2.7692	$2 \cdot 8515$	$3 \cdot 1639$	$4 \cdot 2732$	$4 \cdot 4540$	4.9258	$6 \cdot 2586$
		15	$2 \cdot 0254$	2.6340	3.9082	$4 \cdot 3912$	$4 \cdot 6516$	$5 \cdot 8604$	6.7877	$7 \cdot 1964$
		30	1.8171	$2 \cdot 3245$	$2 \cdot 7677$	$3 \cdot 5037$	$4 \cdot 7583$	$5 \cdot 2835$	$5 \cdot 4233$	$6 \cdot 6695$
		45	$1 \cdot 1521$	$1 \cdot 4970$	2.2618	$2 \cdot 5946$	$3 \cdot 1816$	$3 \cdot 7140$	$4 \cdot 2036$	$4 \cdot 5360$
		60	$0 \cdot 8798$	$1 \cdot 1035$	$2 \cdot 0738$	2.1380	$2 \cdot 3964$	$2 \cdot 7230$	$3 \cdot 4775$	$4 \cdot 2530$
		75	$0 \cdot 8078$	$1 \cdot 0008$	1.9064	1.9198	$2 \cdot 1940$	$2 \cdot 4385$	$3 \cdot 2412$	3.7956
		90	$0 \cdot 7948$	0.9528	1.4501	1.8912	$2 \cdot 1571$	2•1937	$2 \cdot 8976$	$3 \cdot 1963$

Table 9 (Continued)

∞	1	0	$2 \cdot 4132$	$3 \cdot 1608$	$5 \cdot 2635$	7.3768	7.5286	8.3086	8.5967	$9 \cdot 1287$
		15	$3 \cdot 2234$	$4 \cdot 3045$	$7 \cdot 5359$	$7 \cdot 7023$	$7 \cdot 8326$	8.7239	$10 \cdot 3675$	10.9556
		30	$3 \cdot 5605$	$5 \cdot 6770$	$8 \cdot 6267$	$8 \cdot 6858$	8.8597	$9 \cdot 1394$	$9 \cdot 2790$	11.8042
		45	$3 \cdot 8421$	$6 \cdot 0011$	$8 \cdot 6606$	$9 \cdot 1040$	$9 \cdot 2978$	$9 \cdot 4174$	$11 \cdot 2521$	$11 \cdot 2521$
	2	0	$2 \cdot 1548$	$5 \cdot 0995$	5.5184	$5 \cdot 8798$	$5 \cdot 8846$	$6 \cdot 1769$	6.5340	8.0607
		15	$3 \cdot 4757$	$4 \cdot 8707$	$5 \cdot 6738$	6.4239	6.7952	8.4882	$8 \cdot 6451$	$8 \cdot 6480$
		30	$3 \cdot 5344$	$4 \cdot 3122$	$6 \cdot 5210$	$7 \cdot 0101$	$7 \cdot 2053$	$7 \cdot 9031$	8.3637	8.6073
		45	$2 \cdot 3413$	$4 \cdot 3730$	$4 \cdot 6688$	$5 \cdot 3617$	5.9515	$7 \cdot 5085$	$8 \cdot 0174$	9.3327
		60	1.7678	$3 \cdot 4439$	$4 \cdot 1372$	$4 \cdot 2352$	4.7370	7-1393	7.2977	$7 \cdot 4992$
		75	1.6073	3•1092	$3 \cdot 3874$	$3 \cdot 8277$	$4 \cdot 3701$	$6 \cdot 2415$	$6 \cdot 4710$	6.6247
		90	$1 \cdot 5804$	$2 \cdot 0956$	$2 \cdot 8995$	3.7643	$4 \cdot 1576$	$4 \cdot 2984$	$5 \cdot 3481$	$6 \cdot 2369$
	4	0	1.5077	2.7575	$2 \cdot 8384$	$3 \cdot 1395$	$4 \cdot 2568$	$4 \cdot 4397$	$4 \cdot 8897$	$6 \cdot 2324$
		15	$2 \cdot 0110$	$2 \cdot 6218$	$3 \cdot 8898$	$4 \cdot 3634$	$4 \cdot 6236$	$5 \cdot 8359$	6.7577	$7 \cdot 1556$
		30	$1 \cdot 8080$	$2 \cdot 3074$	$2 \cdot 7484$	3.4931	$4 \cdot 7253$	$5 \cdot 2746$	$5 \cdot 4116$	$6 \cdot 6181$
		45	$1 \cdot 1458$	1.4864	$2 \cdot 2446$	2.5846	$3 \cdot 1714$	3.6846	$4 \cdot 1936$	$4 \cdot 5045$
		60	$0 \cdot 8748$	$1 \cdot 0958$	2.0643	$2 \cdot 1218$	$2 \cdot 3879$	2.7016	$3 \cdot 4651$	$4 \cdot 2233$
		75	$0 \cdot 8031$	0.9938	1.8918	1.9107	$2 \cdot 1860$	$2 \cdot 4196$	$3 \cdot 2281$	3.7683
		90	0.7902	$0 \cdot 9464$	$1 \cdot 4388$	1.8821	2.1492	2•1784	$2 \cdot 8754$	$3 \cdot 1832$

More explicitly, the elements of \mathbf{K} can be expressed as

$$
\begin{aligned}
& \mathbf{K}_{i j}^{u u}=A_{66}\left(\frac{a^{2}}{h^{3}}\right) \mathbf{R}_{\phi_{i}^{u} \varphi_{j}^{u}}^{0101}+A_{16}\left(\frac{a b}{h^{3}}\right)\left[\mathbf{R}_{\varphi_{i}^{u} \varphi_{j}^{u}}^{0110}+\mathbf{R}_{\varphi_{i}^{i} \varphi_{j}^{u}}^{1001}\right]+A_{11}\left(\frac{b^{2}}{h^{3}}\right) \mathbf{R}_{\varphi_{i}^{4} \varphi_{j}^{u}}^{1010}, \\
& \mathbf{K}_{i j}^{u v}=A_{26}\left(\frac{a^{2}}{h^{3}}\right) \mathbf{R}_{\phi_{i}^{\phi_{i}} \varphi_{j}^{v}}^{0101}+\left(\frac{a b}{h^{3}}\right)\left[A_{66} \mathbf{R}_{\varphi_{i}^{\varphi} \varphi_{j}^{v}}^{0110}+A_{12} \mathbf{R}_{\varphi_{i}^{4} \varphi_{j}^{v}}^{1001}\right]+A_{16}\left(\frac{b^{2}}{h^{3}}\right) \mathbf{R}_{\varphi_{i}^{\varphi} \varphi_{j}^{v}}^{1010}, \\
& \mathbf{K}_{i j}^{v v}=A_{22}\left(\frac{a^{2}}{h^{3}}\right) \mathbf{R}_{\phi_{i}^{i} \varphi_{j}^{v}}^{0101}+A_{26}\left(\frac{a b}{h^{3}}\right)\left[\mathbf{R}_{\varphi_{i}^{p} \varphi_{j}^{v}}^{0110}+\mathbf{R}_{\varphi_{i}^{i} \varphi_{j}^{v}}^{1001}\right]+A_{66}\left(\frac{b^{2}}{h^{3}}\right) \mathbf{R}_{\varphi_{i}^{p} \varphi_{j}^{v}}^{1010}, \\
& \mathbf{K}_{i j}^{w w}=\left[A_{44}\left(\frac{a^{2}}{h^{3}}\right)-D_{44}\left(\frac{8 a^{2}}{h^{5}}\right)+F_{44}\left(\frac{16 a^{2}}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i}^{p} \varphi_{j}^{w}}^{0101}+\left[A_{45}\left(\frac{a b}{h^{3}}\right)\right. \\
& \left.-D_{45}\left(\frac{8 a b}{h^{5}}\right)+F_{45}\left(16 \frac{a b}{h^{7}}\right)\right]\left[\mathbf{R}_{\varphi_{i}^{i} \varphi_{j}^{w}}^{0110}+\mathbf{R}_{\varphi_{i}^{1} \varphi_{j}^{w}}^{1001}\right]+\left[A_{55}\left(\frac{b^{2}}{h^{3}}\right)-D_{55}\left(\frac{8 b^{2}}{h^{5}}\right)\right. \\
& \left.+F_{55}\left(\frac{16 b^{2}}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i} \varphi_{j}}^{1010}+H_{22}\left(\frac{16 a^{2}}{9 b^{2} h^{7}}\right) \mathbf{R}_{\varphi_{i}^{w} \varphi_{j}^{w}}^{0202 w^{w}}+H_{26}\left(\frac{32 a}{9 b h^{7}}\right)\left[\mathbf{R}_{\varphi_{i}^{*} \varphi_{j}^{v}}^{0211}\right. \\
& \left.+\mathbf{R}_{\varphi_{i} \varphi_{j}^{w}}^{1102}\right]+H_{66}\left(\frac{64}{9 h^{7}}\right) \mathbf{R}_{\varphi_{i}^{w} \varphi_{j}^{w}}^{1111}+H_{16}\left(\frac{32 b}{9 a h^{7}}\right)\left[\mathbf{R}_{\varphi_{i}}^{1120} \varphi_{j}^{w}+\mathbf{R}_{\varphi_{i}^{*} \varphi_{j}^{w}}^{2011}\right] \\
& +H_{12}\left(\frac{16}{9 h^{7}}\right)\left[\mathbf{R}_{\varphi_{i}^{w} \varphi_{j}^{w}}^{0220}+\mathbf{R}_{\varphi_{i}^{p} \varphi_{j}^{w}}^{2002}\right]+H_{11}\left(\frac{16 b^{2}}{9 a^{2} h^{7}}\right) \mathbf{R}_{\varphi_{i} \varphi_{j}}^{2020},
\end{aligned}
$$

Table 10
Lowest eight frequency parameters λ for simply-supported, super elliptical laminate with $n=10, a / h=5$, and stacking sequence $\left[(\theta /-\theta)_{2}\right]_{\mathrm{s}}$

n	a / b	θ	Mode sequence number							
			1	2	3	4	5	6	7	8
1	1	0	$6 \cdot 0218$	8.9537	9.9345	9.9391	$10 \cdot 0149$	$13 \cdot 1332$	13.2958	13.9147
		15	6.2257	9.6896	10.2392	11•1064	$13 \cdot 2903$	$14 \cdot 1577$	16.5516	18.5338
		30	6.7141	$10 \cdot 2638$	11.2900	$12 \cdot 1627$	13.4590	16.3961	16.9869	17.6483
		45	$7 \cdot 0343$	9.9859	12.3593	13.5601	14.5405	14.5416	17.8294	$18 \cdot 2566$
	2	0	$4 \cdot 2239$	$7 \cdot 1214$	$7 \cdot 5015$	$7 \cdot 5228$	$9 \cdot 2323$	9.4220	10.8543	$10 \cdot 8946$
		15	$4 \cdot 5858$	$7 \cdot 7968$	9.4957	9.7773	11.3612	11.8185	12.9794	14.0286
		30	5.5089	$8 \cdot 3758$	8.4169	$10 \cdot 8490$	11.2601	11.4316	11.6121	14.2967
		45	$6 \cdot 2363$	$6 \cdot 3032$	6.7571	8.8983	$10 \cdot 3471$	11.7060	12.4805	12.9732
		60	$4 \cdot 6003$	5.5990	$6 \cdot 4745$	$8 \cdot 5047$	9.3387	10.0348	10.8686	13.4758
		75	4•1299	5.2199	$6 \cdot 4787$	$7 \cdot 9765$	$8 \cdot 2162$	$9 \cdot 5996$	$9 \cdot 9458$	$12 \cdot 2583$
		90	3.7627	5•1030	$6 \cdot 5329$	$6 \cdot 5888$	$7 \cdot 8253$	8.7004	$9 \cdot 2121$	$9 \cdot 5456$
	4	0	$3 \cdot 3501$	$4 \cdot 5742$	$4 \cdot 6385$	5.9758	$6 \cdot 6055$	7.5102	$7 \cdot 6035$	$7 \cdot 6410$
		15	$4 \cdot 8222$	$5 \cdot 3614$	$6 \cdot 2609$	$7 \cdot 6509$	7.6914	7.9651	8.2857	$8 \cdot 5828$
		30	$3 \cdot 4556$	5.6509	$6 \cdot 1616$	6.9808	$7 \cdot 5640$	7.7748	$7 \cdot 8111$	$8 \cdot 1697$
		45	1.8682	$3 \cdot 7558$	$4 \cdot 1840$	$6 \cdot 4103$	$6 \cdot 5880$	7.0229	7.7208	$7 \cdot 8839$
		60	$1 \cdot 3745$	$2 \cdot 8569$	$3 \cdot 0535$	5•1009	$5 \cdot 2461$	6.7557	$7 \cdot 3930$	7.5459
		75	$1 \cdot 2444$	$2 \cdot 6218$	2.7276	$4 \cdot 5052$	$4 \cdot 8396$	$6 \cdot 4755$	6.9217	7.0295
		90	$1 \cdot 1788$	$2 \cdot 4477$	2.5733	$3 \cdot 8652$	$4 \cdot 7321$	$5 \cdot 3569$	$6 \cdot 8588$	$6 \cdot 8892$
10	1	0	$5 \cdot 5139$	7.4437	7.5911	$8 \cdot 3404$	8.6276	11.6807	12.3482	$12 \cdot 8785$
		15	5.7915	$7 \cdot 9058$	$8 \cdot 4019$	8.7520	12.3620	12.6074	14.0926	14.9557
		30	$6 \cdot 2049$	8.7032	$9 \cdot 1548$	10.0722	$12 \cdot 2543$	14.7257	15.5634	$15 \cdot 8216$
		45	6.4412	$9 \cdot 4178$	11.3303	11.3304	11.3681	11.9767	12.7975	$15 \cdot 5033$
	2	0	3.7805	$6 \cdot 2058$	$6 \cdot 5524$	$6 \cdot 6801$	$8 \cdot 2788$	$8 \cdot 3813$	8.6247	9.8631
		15	$4 \cdot 1696$	6.9830	$8 \cdot 5682$	$8 \cdot 6601$	8.8967	$10 \cdot 2420$	$10 \cdot 8516$	11.4450
		30	5.0301	$7 \cdot 4528$	$7 \cdot 9042$	$8 \cdot 4286$	$9 \cdot 1073$	10.0283	10.4381	$10 \cdot 5896$
		45	$4 \cdot 7067$	$5 \cdot 8077$	5.9631	$7 \cdot 7897$	9.4184	$10 \cdot 1696$	$10 \cdot 3722$	$11 \cdot 1583$
		60	$3 \cdot 4721$	$4 \cdot 7518$	6.0334	$7 \cdot 3778$	7.5729	$9 \cdot 1544$	$9 \cdot 4281$	11.9138
		75	$3 \cdot 1344$	$4 \cdot 3856$	$6 \cdot 0940$	6.6911	$6 \cdot 8442$	$8 \cdot 3920$	8.7507	10.5338
		90	2.9215	$4 \cdot 3141$	$5 \cdot 3901$	$6 \cdot 1470$	$6 \cdot 6350$	7.9821	8.0470	8.0996
	4	0	$2 \cdot 8515$	$4 \cdot 1783$	$4 \cdot 2732$	5.0114	$6 \cdot 2586$	$6 \cdot 3583$	$6 \cdot 5740$	$7 \cdot 6035$
		15	$4 \cdot 3912$	$4 \cdot 4356$	$5 \cdot 3006$	$6 \cdot 6478$	7.6509	$7 \cdot 6908$	$8 \cdot 1431$	$8 \cdot 1776$
		30	2.7677	$5 \cdot 2864$	$5 \cdot 4233$	6.0165	6.6695	$7 \cdot 1884$	7.7748	$7 \cdot 8104$
		45	1.4970	$3 \cdot 1816$	3.7140	5.9631	$6 \cdot 0223$	6.5249	6.6994	7.7252
		60	$1 \cdot 1035$	$2 \cdot 3964$	2.7230	4.7513	4.7754	$6 \cdot 4272$	6.7814	7.0201
		75	1.0008	2-1940	$2 \cdot 4385$	$4 \cdot 2302$	$4 \cdot 3850$	$6 \cdot 2181$	6.5704	$6 \cdot 7032$
		90	$0 \cdot 9528$	2.1571	$2 \cdot 1937$	$3 \cdot 6288$	$4 \cdot 3135$	$5 \cdot 0804$	$6 \cdot 4663$	$6 \cdot 4686$

Table 10 (Continued)

∞	1	0	5.5153	$7 \cdot 3768$	7.5927	8.3086	$8 \cdot 5967$	$11 \cdot 6801$	$12 \cdot 3501$	$12 \cdot 8138$
		15	5.7954	$7 \cdot 8326$	$8 \cdot 4060$	8.7239	$12 \cdot 3664$	12.6082	$14 \cdot 1003$	14.8094
		30	6.2099	8.6267	$9 \cdot 1394$	10.0758	12.2596	14.7291	$15 \cdot 5713$	$15 \cdot 8170$
		45	$6 \cdot 4464$	$9 \cdot 4174$	$11 \cdot 2521$	$11 \cdot 2521$	11.3694	11.9846	$12 \cdot 6109$	$15 \cdot 5087$
	2	0	3.7817	$6 \cdot 1769$	6.5340	$6 \cdot 6822$	$8 \cdot 1903$	8.3813	8.5963	$9 \cdot 8137$
		15	$4 \cdot 1722$	6.9883	8.4882	8.6451	$8 \cdot 8976$	$10 \cdot 2454$	$10 \cdot 8561$	11.3357
		30	5.0329	$7 \cdot 4594$	7.9031	8.3637	9.0549	9.8884	10.4439	10.5931
		45	$4 \cdot 6688$	$5 \cdot 8107$	5.9515	$7 \cdot 7968$	9.4174	10.0843	10.3795	11.0780
		60	$3 \cdot 4439$	$4 \cdot 7370$	$6 \cdot 0361$	$7 \cdot 3836$	7.4992	$9 \cdot 1397$	$9 \cdot 4337$	11.9176
		75	3•1092	$4 \cdot 3701$	$6 \cdot 0960$	$6 \cdot 6247$	$6 \cdot 8481$	$8 \cdot 3936$	8.7239	$10 \cdot 5329$
		90	$2 \cdot 8995$	$4 \cdot 2984$	$5 \cdot 3481$	$6 \cdot 1479$	$6 \cdot 6361$	7.9802	7.9812	$8 \cdot 8012$
	4	0	$2 \cdot 8384$	$4 \cdot 1784$	$4 \cdot 2568$	5.0114	6.2324	$6 \cdot 3576$	$6 \cdot 5554$	$7 \cdot 6035$
		15	$4 \cdot 3634$	$4 \cdot 4362$	$5 \cdot 3027$	6.6508	7.6509	7.6908	8.0926	$8 \cdot 1756$
		30	2.7484	5.2883	$5 \cdot 4116$	6.0229	6.6181	$7 \cdot 1982$	7.7748	7.8104
		45	$1 \cdot 4864$	3•1714	$3 \cdot 6846$	5.9518	6.0247	$6 \cdot 4686$	6.7075	$7 \cdot 7370$
		60	$1 \cdot 0958$	$2 \cdot 3879$	$2 \cdot 7016$	$4 \cdot 7334$	$4 \cdot 7370$	$6 \cdot 4289$	6.7857	7.0040
		75	0.9938	2. 1860	$2 \cdot 4196$	$4 \cdot 1937$	$4 \cdot 3701$	$6 \cdot 1603$	$6 \cdot 5501$	$6 \cdot 7043$
		90	0.9464	2.1492	$2 \cdot 1784$	$3 \cdot 6016$	$4 \cdot 2984$	$5 \cdot 0392$	$6 \cdot 4120$	$6 \cdot 4476$

$$
\mathbf{K}_{i j}^{w \theta_{u}}=\left[A_{45}\left(\frac{a b}{h^{3}}\right)-D_{45}\left(\frac{8 a b}{h^{5}}\right)+F_{45}\left(\frac{16 a b}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i} \varphi_{j}^{u}}^{0100}+\left[H_{26}\left(\frac{16 a}{9 b h^{7}}\right)\right.
$$

$$
\left.-F_{26}\left(\frac{4 a}{3 b h^{5}}\right)\right] \mathbf{R}_{\varphi_{i} \varphi_{j}^{u}}^{0201}+\left[H_{12}\left(\frac{16}{9 h^{7}}\right)-F_{12}\left(\frac{4}{3 h^{5}}\right)\right] \mathbf{R}_{\varphi_{i}^{u} \varphi_{j}^{u}}^{021 \varphi_{0}}+\left[A_{55}\left(\frac{b^{2}}{h^{3}}\right)\right.
$$

$$
\left.-D_{55}\left(\frac{8 b^{2}}{h^{5}}\right)+F_{55}\left(\frac{16 b^{2}}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i} \varphi_{j}}^{100 \varphi_{\theta_{u}}}+\left[H_{66}\left(\frac{32}{9 h^{7}}\right)-F_{66}\left(\frac{8}{3 h^{5}}\right)\right] \mathbf{R}_{\varphi_{i} \varphi_{j} \varphi_{u}}^{1101}
$$

$$
+\left[H_{16}\left(\frac{16 b}{9 a h^{7}}\right)-F_{16}\left(\frac{4 b}{3 a h^{5}}\right)\right]\left[2 \mathbf{R}_{\varphi_{i} \varphi_{j}^{110} \varphi_{j_{u}}}^{14 \omega_{\varphi_{i}}}+\mathbf{R}_{\varphi_{i}^{2} \varphi_{j} \theta_{u}}^{2001}\right]+\left[H_{11}\left(\frac{16 b^{2}}{9 a^{2} h^{7}}\right)\right.
$$

$$
\left.-F_{11}\left(\frac{4 b^{2}}{3 a^{2} h^{5}}\right)\right] \mathbf{R}_{\varphi_{i}^{1} \varphi_{j}}^{2010}{ }_{j}
$$

$$
\begin{aligned}
& \mathbf{K}_{i j}^{w \theta_{v}}=\left[A_{44}\left(\frac{a^{2}}{h^{3}}\right)-D_{44}\left(\frac{8 a^{2}}{h^{5}}\right)+F_{44}\left(\frac{16 a^{2}}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i}^{*} \varphi_{j}^{\theta_{v}}}^{010}+\left[H_{22}\left(\frac{16 a^{2}}{9 b^{2} h^{7}}\right)\right. \\
& \left.-F_{22}\left(\frac{4 a^{2}}{3 b^{2} h^{5}}\right)\right] \mathbf{R}_{\varphi_{i}^{\varphi} \varphi_{j}}^{0201}+\left[H_{26}\left(\frac{16 a}{9 b h^{7}}\right)-F_{26}\left(\frac{4 a}{3 b h^{5}}\right)\right] \mathbf{R}_{\varphi_{i}^{\varphi} \varphi_{j}}^{0210} \theta_{v} \\
& +\left[A_{45}\left(\frac{a b}{h^{3}}\right)\right. \\
& \left.-D_{45}\left(\frac{8 a b}{h^{5}}\right)+F_{45}\left(\frac{16 a b}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i} i_{j} \varphi_{v}}^{100 \theta_{0}} \\
& +\left[H_{26}\left(\frac{32 a}{9 b h^{7}}\right)-F_{26}\left(\frac{8 a}{3 b h^{5}}\right)\right] \mathbf{R}_{\varphi_{i}^{i} \varphi_{j}^{\theta_{v}}}^{1101} \\
& +\left[H_{66}\left(\frac{32}{9 h^{7}}\right)-F_{66}\left(\frac{8}{3 h^{5}}\right)\right]\left[\mathbf{R}_{\varphi_{i}^{i} \varphi_{j}}^{1110} \theta_{v}+\left[H_{12}\left(\frac{16}{9 h^{7}}\right)-F_{12}\left(\frac{4}{3 h^{5}}\right)\right] \mathbf{R}_{\varphi_{i}^{\varphi} \varphi_{j}}^{201}{ }^{\theta_{v}}\right] \\
& +\left[H_{16}\left(\frac{16 b}{9 a h^{7}}\right)-F_{16}\left(\frac{4 b}{3 a h^{5}}\right)\right] \mathbf{R}_{\varphi_{i} \varphi_{j}^{\theta_{c}},}^{2010^{v}}, \\
& \mathbf{K}_{i j}^{\theta_{i j} \theta_{u}}=\left[A_{55}\left(\frac{b^{2}}{h^{3}}\right)-D_{55}\left(\frac{8 b^{2}}{h^{5}}\right)+F_{55}\left(\frac{16 b^{2}}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i}{ }^{i} \varphi_{j} \theta_{u}}^{0000}+\left[D_{66}\left(\frac{1}{h^{3}}\right)\right. \\
& \left.+H_{66}\left(\frac{16}{9 h^{7}}\right)-F_{66}\left(\frac{8}{3 h^{5}}\right)\right] \mathbf{R}_{\varphi_{1}^{p_{u}} \varphi_{j}}^{0 \rho_{u}}+\left[D_{16}\left(\frac{b}{a h^{3}}\right)+H_{16}\left(\frac{16 b}{9 a h^{7}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-F_{11}\left(\frac{8 b^{2}}{3 a^{2} h^{5}}\right)\right] \mathbf{R}_{\varphi_{i}{ }_{i u \varphi_{j}}^{10}}^{1010}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{K}_{i j^{i j}}^{\theta_{\theta} \theta_{v}}=\left[A_{45}\left(\frac{a b}{h^{3}}\right)-D_{45}\left(\frac{8 a b}{h^{5}}\right)+F_{45}\left(\frac{16 a b}{h^{7}}\right)\right] \mathbf{R}_{\varphi_{i} p_{i \varphi_{j}}^{\theta_{0}}}^{0 \theta_{0}}+\left[D_{26}\left(\frac{a}{b h^{3}}\right)\right. \\
& \left.+H_{26}\left(\frac{16 a}{9 b h^{7}}\right)-F_{26}\left(\frac{8 a}{3 b h^{5}}\right)\right]_{\mathbf{R}_{\phi_{i} u \rho_{j} \theta_{0}}^{01)^{1}}}+\left[D_{66}\left(\frac{1}{h^{3}}\right)+H_{66}\left(\frac{16}{9 h^{7}}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +\left[D_{16}\left(\frac{b}{a h^{3}}\right)+H_{16}\left(\frac{16 b}{9 a h^{7}}\right)-F_{16}\left(\frac{8 b}{3 a h^{5}}\right)\right] \mathbf{R}_{p_{1}^{2010 p_{c}^{p}},}^{10,} \\
& \mathbf{K}_{i j}^{\theta_{i j} \theta_{0}}=\left[A_{44}\left(\frac{a^{2}}{h^{3}}\right)-D_{44}\left(\frac{8 a^{2}}{h^{5}}\right)+F_{44}\left(\frac{16 a^{2}}{h^{7}}\right)\right] \mathbf{R}_{\rho_{i}^{\circ} \varphi_{j} \theta_{0}}^{0 \theta_{0}}+\left[D_{22}\left(\frac{a^{2}}{b^{2} h^{3}}\right)\right. \\
& \left.+H_{22}\left(\frac{16 a^{2}}{9 b^{2} h^{7}}\right)-F_{22}\left(\frac{8 a^{2}}{3 b^{2} h^{5}}\right)\right]_{\mathbf{R}_{\varphi_{i} p_{i} \varphi_{j}}^{0101}+\left[D_{26}\left(\frac{a}{b h^{3}}\right)+H_{26}\left(\frac{16 a}{9 b h^{7}}\right)\right.} \\
& \left.-F_{26}\left(\frac{8 a}{3 b h^{5}}\right)\right]_{\left[\mathbf{R}_{p_{i} \varphi p_{j}}^{0110_{0}}\right.}+\mathbf{R}_{\varphi_{i} p_{p} \varphi_{j}}^{\left.10 p_{0}\right]}+\left[D_{66}\left(\frac{1}{h^{3}}\right)+H_{66}\left(\frac{16}{9 h^{7}}\right)\right. \\
& \left.-F_{66}\left[\frac{8}{3 h^{5}}\right)\right] \mathbf{R}_{q_{i} i_{0} \varphi_{p} \theta_{c}}^{10} . \tag{20}
\end{align*}
$$

Accordingly, the elements in \mathbf{M} can be further expanded as

$$
\begin{aligned}
& \mathbf{M}_{i j}^{w \theta_{u}}=\left(\frac{-4 h^{3}}{315 a^{2}}\right) \mathbf{R}_{\varphi_{i} \varphi_{p_{u}}}^{1000_{u}}, \quad \mathbf{M}_{i j}^{w \theta_{i}}=\left(\frac{-4 h^{3}}{315 b^{2}}\right) \mathbf{R}_{\varphi_{i}, \varphi_{j}}^{010 \theta_{\theta_{u}}},
\end{aligned}
$$

where

$$
\begin{equation*}
\mathbf{R}_{\varphi_{i} \theta \xi_{j}^{\beta}}^{d f \xi}=\iint_{A} \frac{\partial^{d+e} \varphi_{i}^{\alpha}(\xi, \eta)}{\partial \xi^{d} \partial \eta^{e}} \frac{\partial^{f+g} \theta_{j}^{\beta}(\xi, \eta)}{\partial \xi^{f} \partial \eta^{g}} \mathrm{~d} \xi \mathrm{~d} \eta, \tag{22}
\end{equation*}
$$

in which $\varphi^{\alpha}, \theta^{\beta}=\varphi^{u}, \varphi^{v}, \varphi^{w}, \varphi^{\theta_{u}}, \varphi^{\theta_{v}}$ and $i, j=1,2, \ldots, m$. In this study, the integrand \mathbf{R} in equation (22) was obtained by using the Gaussian quadrature method.

3. NUMERICAL STUDIES AND DISCUSSIONS

Numerical results have been obtained using the proposed method for the symmetrically laminated, super elliptical plates subject to a variety of aspect ratios, length-to-thickness ratios, super elliptical powers, number of plies, stacking angles, and boundary conditions. A convergence study has been carried out to ensure a sufficient number of polynomials is employed in the integration. The results have been compared with published solutions. The material properties assumed for the examples of thick laminated plates are: $E_{1} / E_{2}=40, G_{12} / E_{2}=0 \cdot 6, G_{23} / E_{2}=0 \cdot 5$, $G_{13}=G_{12}, v_{12}=0 \cdot 25$, and a length-to-thickness ratio of 5 .

In the first example, a four-ply laminate with an aspect ratio of 2 , stacking sequence $[\theta /-\theta]_{s}$, and subjected to free, simply-supported, and clamped boundary conditions have been examined. The stacking angle θ varies from 0 to 90° with 15° increment. As shown in Table 1, convergence of the lowest four frequency parameters λ has been studied by increasing the degree of polynomials p. It is seen that the errors between $p=11$ and $p=15$ are less than $0 \cdot 4 \%$ in all cases and even smaller for the fundamental modes. Therefore, it is concluded that $p=15$ is able to ensure convergence of results and has been adopted in all examples.

To check the accuracy of results, a comparison of the lowest six frequency parameters, $\lambda_{1}=\omega(a / \pi)^{2} \sqrt{\rho h / D_{0}}$, has been presented in Table 2 for isotropic, super elliptical, thin plates with $a / b=2, v=0 \cdot 3$, simply-supported, and clamped boundary conditions. The results from this analysis show close agreement with published solutions [2, 3, 7] obtained from classical thin plate theory. In Tables 3 and 4 , the present method has been applied to: (i) isotropic, super elliptical, thick plates with $a / b=1, h / a=0 \cdot 3$, and $v=0 \cdot 3$; (ii) 16 -ply, clamped, circular, thin laminates of E-glass/epoxy. As anticipated, published results [10, 15] using the Reddy's higher-order theory and the classical laminate theory are in excellent agreement with the results obtained by the present method.

To further understand the complicated effect of plate geometry, boundary conditions, and stacking angles on the non-dimensional frequency parameter of the first flexural mode, an extensive study has been conducted. First, the effect of super elliptical power n on the frequency parameter λ for thick super elliptical laminates with $a / b=2$ and stacking sequence $[45 /-45]_{\mathrm{s}}$ has been illustrated in Figure 2. More details of the influence of super elliptical powers n and boundary conditions on the lowest eight frequency parameters of the same laminated plates are given in Table 5. From Figure 2, it is clear that the frequency parameters tend to converge when super elliptical power n is greater than 10 because of the
similarity between such super ellipse and the rectangle which is the super ellipse with n approaching infinity. Lower frequency parameters are obtained for higher super elliptical power n because the increase in n leads to an increase of mass in the laminated super elliptical plate. Furthermore, stiffer boundary constraints lead to higher frequency parameters in all modes.
Next, the effect of stacking angle on the non-dimensional frequency parameter λ for the four-ply, thick, super elliptical laminate subject to free, simply-supported, and clamped boundary conditions is given in Figure 3. Super ellipse powers n of 1,10 , and infinity have been analyzed, with a laminate aspect ratio of 2 , and the layering angle of $[\theta /-\theta]_{\mathrm{s}}$. It is found the frequency parameters for clamped and simply-supported laminates increase with larger stacking angle. However, for free super elliptical laminates, the first flexural mode undergoes a transition from torsional mode to bending mode while the stacking angle increases. Table 6 provides further insight about this transition and it is noted that the displacement contours on the mid-plane of free super elliptical laminates are affected by the stacking angle. One may observe the frequencies increase with stacking angle for torsional modes but decrease for bending modes for free elliptical laminates. A similar trend can also be seen on the curves of $n=10$ and $n=\infty$.

Figure 4 shows the effect of aspect ratio on the non-dimensional frequency parameters λ_{3} of the thick, super elliptical laminate. Here, super elliptical powers n of 1 and 10 have been considered and the laminates' aspect ratios vary from $0 \cdot 25$, $0 \cdot 5,1 \cdot 0,1 \cdot 5,2 \cdot 0,2 \cdot 5,3 \cdot 0,3 \cdot 5$, to $4 \cdot 0$. A stacking sequence of [45/ - 45]s was studied in this example. As expected, the frequencies of super elliptical laminate with $n=1$ are higher than those of $n=10$. It is also seen that higher frequencies were obtained for clamped, simply-supported super elliptical laminates with higher aspect ratios. The increase in aspect ratio leads to the decrease in mass and consequently increases the frequency. Interestingly, the frequencies of free super elliptical laminates exhibit the tendency to converge when their aspect ratios are over $1 \cdot 5$. A similar trend was seen in Narita's investigation on the free, elliptical, orthotropic thin plates [5]. It should be addressed that the first flexural modes compared in Figures 2-4 may not be the lowest modes. This is because some lowest modes of simply-supported and free laminates are in-plane modes whose transverse displacement magnitude is far smaller in comparison with the in-plane displacements. As shown in Table 6, the in-plane modes are completely without contour lines but with significantly deformed outlines. It is also worth noting that the first in-plane modes of both simply-supported and free laminates with the same plate geometry yield similar frequency results since in-plane displacements between simply-supported and free laminates are similar.

Simply-supported, super elliptical, thick laminates have been studied on the effect of length-to-thickness ratio on the fundamental frequency parameters by varying length-to-thickness ratio a / h from $5,10,20,50,100$, to 1000 . As can be seen in Figure 5, the fundamental frequency converges as the laminate becomes thinner $(a / h>100)$. Super elliptical laminates with $n=4$ and $n=10$ show very similar curves which indicates that the geometric differences are not significant. Moreover, by comparing the curves of $n=2,4$, and 10 in Figure 6, it is found
that the increase in n does not guarantee a higher fundamental frequency if a / h is greater than 50 .

The following examples consider eight-ply, super elliptical, thick laminates subjected to free, simply-supported, and clamped boundary conditions. Selected displacement contours and mode shapes for the lowest four modes of the eight-ply, super elliptical, thick laminates with $a / b=2, a / h=5$, and stacking sequence $\left[(45 /-45)_{2}\right]_{\text {s }}$ have been plotted. Tables 7 and 8 show the 3-D mode shapes and the displacement contours on top, middle, and bottom surfaces as the contours may change along the thickness direction of the thick laminates. A solid line denotes the displacement contours along the positive z direction while a dashed line has been used for the negative z direction. The displacement contours of modes 1 and 3 in simply-supported cases disappear because the in-plane displacements are dominant in these two modes.

A cursory investigation of the effects of super elliptical power, aspect ratio, and stacking angle on the frequency parameter λ is tabulated in Tables 9 and 10. The super elliptical power n is assumed to be 1 and 10 for Tables 9 and 10 respectively. The laminates are assumed to be subject to free, simply-supported and clamped boundary conditions and stacked in the sequence of $\left[(\theta /-\theta)_{2}\right]_{s}$. It is observed that the effect of stacking angle varies with the aspect ratio and boundary conditions of the laminates. From the results in Tables 9 and 10, it is found that maximum frequency parameters occur: (i) for free edge condition, with a stacking angle between 30 and 45° and an aspect ratio of 1; (ii) for free edge condition, with a stacking angle between 0 and 45° and an aspect ratio of 2; (iii) for free and simply-supported edge conditions, with a stacking angle between 0 and 30° and an aspect ratio of 4; (iv) for simply-supported and clamped edge conditions, with a stacking angle between 15 and 45° and an aspect ratio of 1 ; (v) for simply-supported edge condition, with a stacking angle between 15 and 60° and an aspect ratio of 2; (vi) for clamped edge condition, with a stacking angle between 45 and 75° and an aspect ratio of 2 or 4 . Lastly, the similarity between the results of eight-ply, thick super elliptical laminates and those of four-ply cases in preceding examples indicates that the number of plies does not have a pronounced influence.

4. CONCLUSIONS

The natural frequencies and mode shapes of a class of plates with rounded corners have been obtained using the p-Ritz method. The plate planform is defined by a super elliptic function which can form a plate shape varying from a square or rectangle to a circle or ellipse. Numerical examples for symmetrically laminated super elliptic plates for free, simply-supported, and clamped boundary conditions have been considered by varying the fiber stacking sequence and degree of super ellipticity.

Although the p-Ritz method has been extensively used in plate vibration problems, in this paper the method has been applied successfully for the first time to the problem of super elliptical planform for symmetrically laminated plates with the inclusion of transverse shear deformation effects. This has been done by
employing Reddy's higher-order plate deformation theory. The method could be readily extended to the calculation of natural frequencies and mode shapes of more complex geometry and boundary conditions, such as a super elliptical plate with internal line or ring supports.

REFERENCES

1. J. M. Whitney 1987 Structural Analysis of Laminated Anisotropic Plates. USA: PA; Technomic Publishing.
2. K. Sato 1971 Journal of Acoustical Society of America 52, 919-922. Free flexural vibration of an elliptical plate with simply supported edge.
3. N. J. DeCapua and B. C. Sun 1972 Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics 39, 613-615. Transverse vibration of a class of orthotropic plates.
4. T. Irie, G. Yamada and M. Sonoda 1983 Journal of Sound and Vibration 86, 442-448. Natural frequencies of square membrane and square plate with rounded corners.
5. Y. Narita 1985 Journal of Sound and Vibration 100(1), 83-89. Natural frequencies of free, orthotropic elliptical plates.
6. C. Rajalingham, R. B. Bhat and G. D. Xistris 1993 Transactions of the American Society of Mechanical Engineers, Journal of Vibration and Acoustics 115(2), 353-358. Natural frequencies and mode shapes of elliptic plates with boundary characteristic orthogonal polynomials as assumed shape functions.
7. C. M. Wang, L. Wang and K. M. Liew 1994 Journal of Sound and Vibration 171(3), 301-314. Vibration and buckling of super elliptical plates.
8. C. W. Lim and K. M. Liew 1995 American Society of Civil Engineers, Journal of Engineering Mechanics 121(2), 203-213. Vibration of perforated plates with rounded corners.
9. C. W. Lim, S. Kitipornchai and K. M. Liew 1998 Composite Science and Technology, $\mathbf{5 8 (3 - 4) , 4 3 5 - 4 4 5}$. Free vibration analysis of doubly connected super elliptical laminated composite plates.
10. K. M. Liew, S. Kitipornchai and C. W. Lim 1998 American Society of Civil Engineers, Journal of Engineering Mechanics 124(2), 137-145. Free vibration analysis of thick super-elliptical plates.
11. J. N. Reddy 1984 Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics 51, 745-752. A simple higher-order theory for laminated composite plates.
12. P. C. Yang, C. H. Norris and Y. Stavsky 1966 International Journal of Solid and Structures 2, 665-684. Elastic wave propagation in heterogeneous plates.
13. P. S. Frederiksen 1995 Journal of Sound and Vibration 186(5), 743-759. Single-layer plate theories applied to the flexural vibration of completely free thick laminates.
14. J. N. Reddy and N. D. Phan 1985 Journal of Sound and Vibration 98(2), 157-170. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory.
15. K. M. Liew 1994 Transactions of the American Society of Mechanical Engineers, Journal of Vibration and Acoustics 116(1), 141-145. Vibration of clamped circular symmetric laminates.
