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This paper reports a free vibration analysis of thick plates with rounded corners
subject to a free, simply-supported or clamped boundary condition. The plate
perimeter is defined by a super elliptic function with a power defining the shape
ranging from an ellipse to a rectangle. To incorporate transverse shear
deformation, the Reddy third-order plate theory is employed. The energy integrals
incorporating shear deformation and rotary inertia are formulated and the p-Ritz
procedures are used to derive the governing eigenvalue equation. Numerical
examples for plates with different shapes and boundary conditions are solved and
their frequency parameters, where possible, are compared with known results.
Parametric studies are carried out to show the sensitivities of frequency parameters
by varying the geometry, fibre stacking sequence, and boundary condition.
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1. INTRODUCTION

The extensive use of fiber-reinforced composites as primary structural components
in aerospace, civil, electronic, and many other engineering disciplines has
motivated research on the free vibration of laminated plates. Almost all previous
research has focused on rectangular laminated plates and none has considered
rectangular laminates with rounded corners even though this plate geometry has
practical importance in various engineering applications, such as printed circuit
boards. The rounded corners are advantageous in helping to diffuse and dilute
stress concentrations at the otherwise sharp corners. The shape of rectangular
laminated plates with rounded corners can be described by a super elliptical
function. Varying the super elliptic power in the super elliptical function can
generate a plate shape ranging from a square or rectangular to a circle or ellipse.
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The free vibration characteristics of super elliptical plates, including elliptical
and circular plates, can be found in many earlier works [1–6]. Most previous works
considered the free vibration of circular or elliptical plates in polar or elliptic
co-ordinates which are naturally unsuitable for laminated plates with fibrous
directions coinciding with the Cartesian co-ordinate system. Wang et al. [7]
presented a complete investigation of free vibration and buckling analyses of thin
super elliptical plates using the p-Ritz method and the classical thin plate theory.
This work was further expanded by Lim and Liew [8] and Lim et al. [9] to isotropic
perforated and composite laminated super elliptical plates, respectively. To
examine the effects of transverse shear deformation, Liew et al. [10] extended their
previous works [7–9] to isotropic thick super elliptical plates by incorporating
Reddy’s higher-order plate theory [11] in the p-Ritz method for free vibration
solutions.

Although the classical thin plate theory provides an easy way to analyze the thin
composite laminates [9], this theory has many drawbacks because of the Kirchhoff
assumptions which lead to zero transverse shear strains and zero transverse normal
strain. As laminated composite panels are often weaker in shear mode, the
transverse shear strain must be taken into account. The first-order shear
deformation theory for composite laminates proposed by Yang et al. [12] gained
its popularity because it provides an easy way to incorporate the effects of
transverse shear. In this theory, shear correction factors are used to compensate
for the assumption made of zero transverse shear strain on the top and bottom
surfaces of the laminated plate. However, for laminated composite panels, the
shear correction factor depends on various factors and is unknown for arbitrarily
composite laminates. The requirement for shear correction factors in the
first-order shear deformation theory has made it less attractive for many
applications.

In an effort to circumvent the problems of shear correction factors, various
second and higher-order shear deformation theories have been developed. The
most popular one was the higher-order shear deformation theory proposed by
Reddy [11]. The displacement field of Reddy’s higher-order shear deformation
theory accommodates parabolic variation of transverse shear strains and vanishing
transverse shear stresses on the top and bottom of a general laminate. Therefore,
no shear correction factor is required in this theory. The theory has been shown
to provide reasonably accurate free vibration solutions for moderately thick
laminates [13, 14].

This paper examines the free vibration behavior of moderately thick symmetric
laminates of super elliptical planform. This investigation forms a natural extension
of the work of Liew et al. [10] from the isotropic case to a laminated panel. Because
transverse shear deformation plays an important role in the analysis of composite
laminates, Reddy’s higher-order plate theory has been used to formulate the
energy integral functional so that no shear correction factor is needed. The p-Ritz
procedure is used to minimize this energy integral functional to arrive at the
governing eigenvalue equation. To illustrate the method, several numerical
examples of super elliptical symmetrically laminated plates with different plate
geometries and boundary conditions are solved. Parametric studies are also carried
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Figure 1. Geometric definitions of laminated super elliptical plates.

out to examine the effects of plate geometry, boundary conditions, super elliptical
power, aspect ratio, length-to-thickness ratio, and fibre stacking sequences on the
vibration frequency parameters.

2. MATHEMATICAL FORMULATION

The thick super elliptical laminated plate and associated reference Cartesian
co-ordinate system are shown in Figure 1. The dimensions of the laminated plate

T 1

Convergence of the frequency parameter, l=vabzrh/D0, for the super elliptical
plate with a/b=2, a/h=5, n=10, and stacking sequence [30/−30]S

Mode sequence number
Boundary ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
condition p 1 2 3 4 5 6 7 8

Free 7 3·1476 4·1104 6·1582 6·5514 6·8263 7·9043 8·4316 8·5328
9 3·1463 4·1087 6·1509 6·5466 6·8194 7·9043 8·4292 8·5103

11 3·1460 4·1083 6·1494 6·5458 6·8185 7·9042 8·4287 8·5081
13 3·1460 4·1083 6·1492 6·5456 6·8183 7·9042 8·4286 8·5076
15 3·1460 4·1083 6·1491 6·5456 6·8183 7·9042 8·4286 8·5075

Simply- 7 4·7687 7·0959 7·9043 8·4316 9·1080 10·0296 10·1051 11·1485
supported 9 4·7286 7·0227 7·9043 8·4292 9·1075 9·8742 10·0286 10·0681

11 4·7256 7·0172 7·9042 8·4287 9·1074 9·8029 10·0284 10·0632
13 4·7247 7·0156 7·9042 8·4286 9·1073 9·7956 10·0283 10·0616
15 4·7244 7·0151 7·9042 8·4286 9·1073 9·7947 10·0283 10·0614

Clamped 7 6·1453 8·3177 11·4036 13·1248 15·3118 17·5963 18·5385 19·4088
9 6·1019 8·2274 11·1160 11·3441 13·3422 14·3497 16·2542 17·5993

11 6·0992 8·2211 10·9825 11·3373 13·1520 14·0344 15·8044 17·4993
13 6·0983 8·2194 10·9710 11·3358 13·1401 14·0117 15·7639 17·1540
15 6·0980 8·2190 10·9698 11·3355 13·1380 14·0097 15·7597 17·1133
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T 2

Comparison of the frequency parameters, l1 =v(a/p)2zrh/D0, for the thin, super
elliptical, isotropic, plate with a/b=2

Mode sequence number
ZXXXXXXXXXXCXXXXXXXXXXV

Source 1 2 3 4 5 6

n=1, simply-supported plate
Reference [2] 5·358 – – – – –
Reference [7] 5·355 9·582 15·533 18·704 23·298 25·439

Present 5·355 9·579 15·529 18·701 23·290 25·429

n=1, clamped plate
Reference [3] 11·097 16·005 22·684 28·317 31·203 35·681
Reference [7] 11·100 16·008 22·689 28·327 31·205 35·683

Present 11·094 16·005 22·681 28·304 31·197 35·671

n=10, simply-supported plate
Reference [7] 4·986 7·969 12·955 16·989 19·953 20·003

Present 4·985 7·967 12·966 16·983 19·958 19·987

n=10, clamped plate
Reference [7] 9·951 12·897 18·132 25·743 25·926 28·805

Present 9·962 12·904 18·154 25·701 25·930 28·809

are assumed to be a, b, and h in the x, y, and z directions. The periphery of the
super ellipse is defined by the super elliptical function

02x
a 1

2n

+02y
b 1

2n

=1, (1)

in which n is the power of super ellipse. The shape becomes an ellipse if the super
elliptical power n is 1. Interestingly, if the power n is continually increased, the
plate becomes a rectangle with four rounded corners. Higher values of n lead to
a smaller corner radius. The plate becomes a rectangle as n approaches infinity.

The laminae are assumed to possess a plane of elastic symmetry parallel to the
xy plane and are stacked symmetrically with respect to the middle surface of the
laminate. The vibration frequencies of the super elliptical laminate subjected to a
variety of boundary conditions, aspect ratios, length-to-thickness ratios, super
elliptical powers, number of plies, and stacking angles are to be determined.

2.1.  

Let u, v, and w be the in-plane and out-of-plane displacement components of
a general point of the thick super elliptical laminated plate. The displacement field
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of a laminated plate based on Reddy’s higher-order shear deformation theory can
be assumed as:

u(x, y, z, t)= u0(x, y, t)+ zfx (x, y, t)−
4z3

3h2 0fx (x, y, t)+
1w(x, y, t)

1x 1,

v(x, y, z, t)= v0(x, y, t)+ zfy (x, y, t)−
4z3

3h2 0fy (x, y, t)+
1w(x, y, t)

1y 1,
w(x, y, z, t)=w0(x, y, t), (2)

where u0, v0, w0, fx , and fy are the displacement and rotation components of the
mid-plane of the laminated plate in the Cartesian co-ordinate system.

In linear elastic analysis, the stress–strain relationship for the kth lamina in the
Cartesian co-ordinate system is given by

[s]k =[Q� ]k [j]k , (3)

T 3

Comparison of frequency parameters, l2 =vazr/E, for the isotropic, super
elliptical, thick plate with a/b=1 and h/a=0·3

Mode sequence number
ZXXXXXXXXXXCXXXXXXXXXXV

Source 1 2 3 4 5 6

n=1, free plate
Reference [10] 0·6192 0·6193 1·0298 1·3704 1·3704 2·1784

Present 0·6192 0·6193 1·0298 1·3704 1·3707 2·1784

n=10, free plate
Reference [10] 0·3898 0·5734 0·7151 0·9783 0·9783 1·6874

Present 0·3898 0·5734 0·7151 0·9780 0·9783 1·6874

n=1, simply-supported plate
Reference [10] 0·5785 1·5291 1·5291 2·6301 2·6301 2·9091

Present 0·5784 1·5291 1·5291 2·6301 2·6301 2·9091

n=10, simply-supported plate
Reference [10] 0·5532 1·3429 1·3429 2·0376 2·4412 2·5420

Present 0·5530 1·3429 1·3429 2·0377 2·4412 2·5420

n=1, clamped plate
Reference [10] 1·1216 2·1616 2·1616 3·2944 3·2948 3·6893

Present 1·1216 2·1615 2·1617 3·2948 3·2951 3·6897

n=10, clamped plate
Reference [10] 0·9862 1·8839 1·8839 2·6440 3·1176 3·1467

Present 0·9863 1·8845 1·8845 2·6455 3·1187 3·1478
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T 4

Comparison of frequency parameters, l3 =va2zrh/D0, for the clamped, thin,
laminated, circular plate of E-glass/epoxy with stacking sequence [(u/− u)4]S

Mode sequence number
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Source u 1 2 3 4 5 6 7 8

Reference [15] 0 32·859 60·062 75·686 99·436 109·43 139·76 149·39 154·08
Present 32·860 60·057 75·688 99·426 109·41 139·76 149·37 154·05

Reference [15] 15 32·871 61·208 74·842 101·29 110·72 137·67 151·62 156·87
Present 32·871 61·203 74·843 101·28 110·71 137·66 151·59 156·85

Reference [15] 30 32·893 64·192 72·438 106·10 113·09 132·43 157·76 162·28
Present 32·893 64·186 72·438 106·09 113·07 132·42 157·73 162·26

Reference [15] 45 32·904 67·000 69·908 109·88 113·80 128·85 162·76 164·33
Present 32·904 66·996 69·904 109·87 113·78 128·84 162·74 164·30

in which, [s]k , [j]k and [Q� ]k are stress, strain, and moduli of the kth lamina in the
reference Cartesian co-ordinate. Here, (Q� ij )k are obtained from the transform
matrix with fibre angle uk and the stiffness constants, (Qij )k , which are related to
the material properties, E1, E2, n12, n21, G12, G13, G23, of each ply.

Neglecting the effect of transverse normal stress sz , for a laminated plate
consisting of N orthotropic laminae, the total strain energy for the entire laminated
plate is given by,

U=
1
2

s
N

k=1 g g
A
g

hk

hk−1

(sxox + syoy + sxzoxz + syzoyz + sxyoxy )k dz dA. (4)

Similarly, the expression for total kinetic energy T due to the free vibration of
laminated plate is,

T=
1
2

s
N

k=1 g g
A
g

hk

hk−1

rk$01u
1t1

2

+01v
1t1

2

+
1w
1t1

2

% dz dA, (5)

in which rk is the mass density of the kth lamina.
As [Q� ]k changes from layer to layer, it is possible to obtain the equivalent moduli

for the entire plate,

(Aij , Bij , Dij , Eij , Fij , Hij )= s
N

k=1 g
hk+1

hk

(Q� ij )k (1, z, z2, z3, z4, z6) dz. (6)
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Here, all Bij and Eij vanish if the laminae are stacked symmetrically about the
mid-plane. For the free vibration problem, the deflection and rotation functions
of the laminate mid-plane are periodic in time. Therefore, for small amplitude
vibration, one can assume the displacement and rotation components to be
expressed in the following forms:

u0(x, y, t)=U(x, y) sin vt,

v0(x, y, t)=V(x, y) sin vt,

w0(x, y, t)=W(x, y) sin vt,

fx (x, y, t)=Uu (x, y) sin vt,

fy (x, y, t)=Uv (x, y) sin vt. (7)

Figure 2. Effect of super elliptical power n on the frequency parameter l of super elliptical
laminate with a/h=5, a/b=2, and stacking sequence [45/−45]S.
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T 5

Lowest eight frequency parameters l for the super elliptical plates with a/h=5,
a/b=2, and stacking sequence [45/−45]S

Mode sequence number
Boundary ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

n condition 1 2 3 4 5 6 7 8

1 Free 2·5983 5·5466 5·6871 6·2363 6·7571 8·8092 8·9605 10·3471
Simply-sup. 5·8709 6·2363 6·7571 8·2904 10·3471 10·9209 12·2416 12·4805
Clamped 7·2989 9·6234 12·2365 14·1092 15·0761 16·7466 18·0747 19·4689

2 Free 2·3905 4·4875 5·2666 5·2702 6·1986 7·5522 8·1619 9·5922
Simply-sup. 5·4615 6·1986 6·1986 9·5922 9·8779 11·2300 11·5093 12·0360
Clamped 6·7518 8·6016 10·9800 13·0685 13·7594 14·8506 16·6438 17·0408

4 Free 2·3058 4·1015 4·8653 5·1628 6·0206 7·0087 7·8226 8·8646
Simply-sup. 5·4046 6·0206 7·2586 9·4409 9·6891 10·5042 11·3674 11·4598
Clamped 6·6521 8·3929 10·7465 12·8891 13·5156 14·3640 16·4075 16·4124

6 Free 2·2827 4·0093 4·7657 5·1422 5·9833 6·8665 7·7474 8·6656
Simply-sup. 5·4021 5·9833 7·2468 9·4236 9·6707 10·2982 11·2774 11·3542
Clamped 6·6404 8·3662 10·7158 12·8724 13·4803 14·2955 16·3062 16·3867

8 Free 2·2730 3·9732 4·7262 5·1341 5·9696 6·8088 7·7201 8·5827
Simply-sup. 5·4026 5·9696 7·2459 9·4197 9·6681 10·2128 11·1988 11·3522
Clamped 6·6374 8·3592 10·7077 12·8688 13·4708 14·2773 16·2767 16·3823

10 Free 2·2680 3·9554 4·7067 5·1300 5·9631 6·7798 7·7073 8·5401
Simply-sup. 5·4032 5·9631 7·2465 9·4184 9·6685 10·1696 11·1583 11·3520
Clamped 6·6364 8·3568 10·7053 12·8678 13·4678 14·2712 16·2662 16·3823

20 Free 2·2606 3·9301 4·6786 5·1235 5·9543 6·7376 7·6903 8·4764
Simply-sup. 5·4051 5·9543 7·2499 9·4175 9·6717 10·1066 11·0989 11·3539
Clamped 6·5836 8·3219 10·6675 12·7623 13·4078 14·2257 16·2162 16·3286

a Free 2·2579 3·9213 4·6688 5·1210 5·9515 6·7226 7·6849 8·4527
Simply-sup. 5·4064 5·9515 7·2533 9·4174 9·6749 10·0843 11·0780 11·3554
Clamped 6·6352 8·3544 10·7017 12·8668 13·4632 14·2651 16·2554 16·3739

Substituting equation (7) into equations (4) and (5) yields the maximum strain
energy Umax and the maximum kinetic energy Tmax during a vibratory cycle. In the
Rayleigh–Ritz method, the governing equation for the free vibration of laminated
plate can be established by minimizing the following governing total energy
functional,

P=Umax −Tmax . (8)

The Rayleigh–Ritz method requires the solution to be in the form of a series
containing unknown parameters. As a result, the non-dimensional displacement
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and rotation components can be approximated by assuming a finite set of
unknown parameters in the functionals.

U(j, h)= s
m

i=1

cu
i 8

u
i (j, h),

V(j, h)= s
m

i=1

cv
i 8

v
i (j, h),

W(j, h)= s
m

i=1

cw
i 8

w
i (j, h),

Uu (j, h)= s
m

i=1

cuu
i 8uu

i (j, h),

Uv (j, h)= s
m

i=1

cuv
i 8uv

i (j, h), (9)

Figure 3. Effect of stacking angle u on the frequency parameter l3 of super elliptical laminate with
a/h=5, a/b=2, and stacking sequence. [u/− u]S. —E—, n=1, free; —Q—, n=1, ss; —R—,
n=1, clamp; —e—, n=10, free; —q—, n=10, ss; —r—, n=10, clamp; —×—, n=a, free;
—*—, n=a, free; —+—, n=a, clamp.
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T 6

Displacement contours for lowest four frequencies of free, super elliptical laminate
with n=1 and 10, a/h=5, and stacking sequence [u/− u]S

where 8u
i , 8v

i , 8w
i , 8uu

i , and 8uv
i are the shape functions and cu

i , cv
i , cw

i , cuu
i , and cuv

i

are the associated unknown coefficients. j and h denote the non-dimensional
co-ordinates given by

j=
x
a
, h=

y
b
. (10)

The problem now lies in finding suitable shape functions that are general for any
boundary conditions and plate geometries.

2.2. p-R 

In the p-Ritz procedures, the shape functions, 8u
i , 8y

i , 8w
i , 8uu

i , and 8uv
i are

assumed to be the product of two-dimensional polynomials and basic functions
as follows:

8k
i (j, h)= fi (j, h)8k

b (j, h), (11)

in which k= u, v, w, uu and uv . The functional fi (j, h) can be constructed by a
two-dimensional polynomial series

s
m

i=1

fi (j, h)= s
p

q=0

s
q

i=0

jq− ihi. (12)



5

10

15

20

25

30

35

0
3.02.01.0

3

0.0 4.0

a/b

      669

Therefore, the number of terms m in equation (9) becomes

m=
(p+1)(p+2)

2
, (13)

where p is the highest degree of the set of two-dimensional polynomials.
To satisfy the geometry of a laminated plate, the basic function 8k

b (j, h) in
equation (9) is assumed to be the product of boundary expressions of all
supporting edges. The basic function, for the super elliptical laminated plate with
super elliptic power n, can be assumed as

8k
b (j, h)= [(2j)2n +(2h)2n −1]Vk, (14)

in which Vk represents the associated basic power of boundary expression to
ensure automatic satisfaction of the boundary condition of the supporting edge.
They are assumed to be 0, 1, and 2 depending on whether the boundary condition
of the supporting edge is free, simply supported, or clamped. Note that the
simply-supported edges are subject to constraint in the z direction only, i.e., the
soft simply-supported condition.

Figure 4. Effect of aspect ratio a/b on the frequency parameter l3 of super elliptical laminate with
a/h=5, and stacking sequence [45/−45]S . —E—, n=1, free; —Q—, n=1, ss; —R—, n=1,
clamp; —e—, n=10, free; —q—, n=10, ss; —r—, n=10, clamp.
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Figure 5. Effect of length-to-thickness ratio a/h on the frequency parameter l of
simply-supported, super elliptical laminate with a/b=2 and stacking sequence [45/−45]S . —e—,
n=1; —w—, n=2; ––r––, n=4; —q—, n=10.

Substituting equation (9) into equation (7) and minimizing the total energy
functional P with respect to the unknown coefficients yields the governing
eigenvalue equation

{[K]− l2[M]}{c}= {0}, (15)

where {c}= {cu cv cw acuu bcuv}T.
If all laminae are made of the same material, the non-dimensional frequency

parameter l can be expressed in terms of frequency, plate dimensions, D0, and
mass density per unit volume r as

l=vabXrh
D0

, (16)

where

D0 =
E11h3

12(1− n12n21)
. (17)
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The vibration frequencies and mode shapes of super elliptical laminates are then
obtained by solving l. In addition, the stiffness matrix K and the mass matrix M
in equation (15) are given by

[Kuu] [Kuv] 0 0 0

[Kvv] 0 0 0

G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

[K]=
1
D0

[Kww] [Kwuu] [Kwuv]

(18)
sym. [Kuuuu] [Kuuuv]

[Kuvuv]

T 7

Displacement contours and mode shapes for lowest four frequencies of elliptical
laminate with a/b=2, a/h=5, and stacking sequence [(45/−45)2]S
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T 8

Displacement contours and mode shapes for lowest four frequencies of super elliptical
laminate with n=10, a/b=2, a/h=5, and stacking

sequence [(45/−45)2]S

and

[Muu] 0 0 0 0

[Mvv] 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

[M]=
[Mww] [Mwuu] [Mwuv]

. (19)

sym. [Muuuu] 0

[Muvuv]
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T 9

Lowest eight frequency parameters l for free elliptical laminate with a/h=5 and
stacking sequence [(u/− u)2]S

Mode sequence number
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

n a/b u 1 2 3 4 5 6 7 8

1 1 0 3·8355 3·8529 7·9348 8·2319 9·9345 9·9391 10·0149 11·8522
15 3·8740 6·5375 8·4631 10·2392 10·8724 11·1064 12·2286 13·5895
30 3·9148 8·3484 9·8057 10·2638 12·0214 12·1627 12·4177 15·7178
45 3·9542 8·8445 9·9859 11·5871 11·9448 12·4695 14·5405 14·5416

2 0 3·3359 5·3822 6·7392 7·1214 7·2982 7·5228 8·0060 9·4220
15 4·7554 5·3504 7·4126 8·2400 8·7515 9·4957 10·6249 11·7389
30 3·7594 6·0876 7·5448 8·3758 8·9408 9·5433 10·8490 11·2601
45 2·6506 5·9443 6·2079 6·2363 6·7571 9·5001 9·6956 10·3471
60 2·1292 4·6003 4·7504 5·5990 5·9170 7·7753 9·3017 9·3387
75 1·9867 4·1299 4·3715 4·9561 5·2199 7·0919 8·1632 8·2162
90 1·9576 3·1600 3·7627 4·2841 5·1030 5·7620 6·5888 6·9207

4 0 2·0750 3·1010 3·3501 3·7560 4·6385 4·8308 5·4232 6·6055
15 2·5733 3·0238 4·3726 5·3614 5·4861 6·3102 7·5503 7·7521
30 2·1160 2·9655 3·4556 3·8548 5·4207 5·7005 6·1616 7·3944
45 1·3891 1·8632 2·9139 2·9307 3·7558 4·1840 4·5754 4·9846
60 1·0817 1·3745 2·3673 2·7859 2·8569 3·0535 3·8250 4·6572
75 0·9993 1·2444 2·2028 2·5095 2·6218 2·7276 3·5784 4·2236
90 0·9835 1·1788 1·9636 2·1667 2·4477 2·5733 3·4263 3·5188

10 1 0 2·4422 3·1796 5·3338 7·4437 7·5641 8·3404 8·6276 9·2342
15 3·2413 4·3501 7·6215 7·7276 7·9058 8·7520 10·4285 11·0553
30 3·5714 5·7322 8·6906 8·7032 8·9507 9·1548 9·3485 11·8926
45 3·8418 6·0597 8·7538 9·1791 9·3469 9·4178 11·3303 11·3304

2 0 2·1790 5·1207 5·5475 5·9429 5·9442 6·2058 6·5524 8·1487
15 3·5088 4·8728 5·7269 6·4878 6·8453 8·5682 8·6601 8·6960
30 3·5430 4·3474 6·5351 7·0646 7·2709 7·9042 8·4286 8·7014
45 2·3509 4·4115 4·7067 5·3671 5·9631 7·5711 8·0423 9·4184
60 1·7774 3·4721 4·1747 4·2493 4·7518 7·1492 7·3594 7·5729
75 1·6166 3·1344 3·4195 3·8451 4·3856 6·3008 6·4937 6·6911
90 1·5896 2·1169 2·9215 3·7823 4·2043 4·3141 5·3901 6·3094

4 0 1·5199 2·7692 2·8515 3·1639 4·2732 4·4540 4·9258 6·2586
15 2·0254 2·6340 3·9082 4·3912 4·6516 5·8604 6·7877 7·1964
30 1·8171 2·3245 2·7677 3·5037 4·7583 5·2835 5·4233 6·6695
45 1·1521 1·4970 2·2618 2·5946 3·1816 3·7140 4·2036 4·5360
60 0·8798 1·1035 2·0738 2·1380 2·3964 2·7230 3·4775 4·2530
75 0·8078 1·0008 1·9064 1·9198 2·1940 2·4385 3·2412 3·7956
90 0·7948 0·9528 1·4501 1·8912 2·1571 2·1937 2·8976 3·1963
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T 9 (Continued)

a 1 0 2·4132 3·1608 5·2635 7·3768 7·5286 8·3086 8·5967 9·1287
15 3·2234 4·3045 7·5359 7·7023 7·8326 8·7239 10·3675 10·9556
30 3·5605 5·6770 8·6267 8·6858 8·8597 9·1394 9·2790 11·8042
45 3·8421 6·0011 8·6606 9·1040 9·2978 9·4174 11·2521 11·2521

2 0 2·1548 5·0995 5·5184 5·8798 5·8846 6·1769 6·5340 8·0607
15 3·4757 4·8707 5·6738 6·4239 6·7952 8·4882 8·6451 8·6480
30 3·5344 4·3122 6·5210 7·0101 7·2053 7·9031 8·3637 8·6073
45 2·3413 4·3730 4·6688 5·3617 5·9515 7·5085 8·0174 9·3327
60 1·7678 3·4439 4·1372 4·2352 4·7370 7·1393 7·2977 7·4992
75 1·6073 3·1092 3·3874 3·8277 4·3701 6·2415 6·4710 6·6247
90 1·5804 2·0956 2·8995 3·7643 4·1576 4·2984 5·3481 6·2369

4 0 1·5077 2·7575 2·8384 3·1395 4·2568 4·4397 4·8897 6·2324
15 2·0110 2·6218 3·8898 4·3634 4·6236 5·8359 6·7577 7·1556
30 1·8080 2·3074 2·7484 3·4931 4·7253 5·2746 5·4116 6·6181
45 1·1458 1·4864 2·2446 2·5846 3·1714 3·6846 4·1936 4·5045
60 0·8748 1·0958 2·0643 2·1218 2·3879 2·7016 3·4651 4·2233
75 0·8031 0·9938 1·8918 1·9107 2·1860 2·4196 3·2281 3·7683
90 0·7902 0·9464 1·4388 1·8821 2·1492 2·1784 2·8754 3·1832

More explicitly, the elements of K can be expressed as
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T 10

Lowest eight frequency parameters l for simply-supported, super elliptical laminate
with n=10, a/h=5, and stacking sequence [(u/− u)2]S

Mode sequence number
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

n a/b u 1 2 3 4 5 6 7 8

1 1 0 6·0218 8·9537 9·9345 9·9391 10·0149 13·1332 13·2958 13·9147
15 6·2257 9·6896 10·2392 11·1064 13·2903 14·1577 16·5516 18·5338
30 6·7141 10·2638 11·2900 12·1627 13·4590 16·3961 16·9869 17·6483
45 7·0343 9·9859 12·3593 13·5601 14·5405 14·5416 17·8294 18·2566

2 0 4·2239 7·1214 7·5015 7·5228 9·2323 9·4220 10·8543 10·8946
15 4·5858 7·7968 9·4957 9·7773 11·3612 11·8185 12·9794 14·0286
30 5·5089 8·3758 8·4169 10·8490 11·2601 11·4316 11·6121 14·2967
45 6·2363 6·3032 6·7571 8·8983 10·3471 11·7060 12·4805 12·9732
60 4·6003 5·5990 6·4745 8·5047 9·3387 10·0348 10·8686 13·4758
75 4·1299 5·2199 6·4787 7·9765 8·2162 9·5996 9·9458 12·2583
90 3·7627 5·1030 6·5329 6·5888 7·8253 8·7004 9·2121 9·5456

4 0 3·3501 4·5742 4·6385 5·9758 6·6055 7·5102 7·6035 7·6410
15 4·8222 5·3614 6·2609 7·6509 7·6914 7·9651 8·2857 8·5828
30 3·4556 5·6509 6·1616 6·9808 7·5640 7·7748 7·8111 8·1697
45 1·8682 3·7558 4·1840 6·4103 6·5880 7·0229 7·7208 7·8839
60 1·3745 2·8569 3·0535 5·1009 5·2461 6·7557 7·3930 7·5459
75 1·2444 2·6218 2·7276 4·5052 4·8396 6·4755 6·9217 7·0295
90 1·1788 2·4477 2·5733 3·8652 4·7321 5·3569 6·8588 6·8892

10 1 0 5·5139 7·4437 7·5911 8·3404 8·6276 11·6807 12·3482 12·8785
15 5·7915 7·9058 8·4019 8·7520 12·3620 12·6074 14·0926 14·9557
30 6·2049 8·7032 9·1548 10·0722 12·2543 14·7257 15·5634 15·8216
45 6·4412 9·4178 11·3303 11·3304 11·3681 11·9767 12·7975 15·5033

2 0 3·7805 6·2058 6·5524 6·6801 8·2788 8·3813 8·6247 9·8631
15 4·1696 6·9830 8·5682 8·6601 8·8967 10·2420 10·8516 11·4450
30 5·0301 7·4528 7·9042 8·4286 9·1073 10·0283 10·4381 10·5896
45 4·7067 5·8077 5·9631 7·7897 9·4184 10·1696 10·3722 11·1583
60 3·4721 4·7518 6·0334 7·3778 7·5729 9·1544 9·4281 11·9138
75 3·1344 4·3856 6·0940 6·6911 6·8442 8·3920 8·7507 10·5338
90 2·9215 4·3141 5·3901 6·1470 6·6350 7·9821 8·0470 8·0996

4 0 2·8515 4·1783 4·2732 5·0114 6·2586 6·3583 6·5740 7·6035
15 4·3912 4·4356 5·3006 6·6478 7·6509 7·6908 8·1431 8·1776
30 2·7677 5·2864 5·4233 6·0165 6·6695 7·1884 7·7748 7·8104
45 1·4970 3·1816 3·7140 5·9631 6·0223 6·5249 6·6994 7·7252
60 1·1035 2·3964 2·7230 4·7513 4·7754 6·4272 6·7814 7·0201
75 1·0008 2·1940 2·4385 4·2302 4·3850 6·2181 6·5704 6·7032
90 0·9528 2·1571 2·1937 3·6288 4·3135 5·0804 6·4663 6·4686
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T 10 (Continued)

a 1 0 5·5153 7·3768 7·5927 8·3086 8·5967 11·6801 12·3501 12·8138
15 5·7954 7·8326 8·4060 8·7239 12·3664 12·6082 14·1003 14·8094
30 6·2099 8·6267 9·1394 10·0758 12·2596 14·7291 15·5713 15·8170
45 6·4464 9·4174 11·2521 11·2521 11·3694 11·9846 12·6109 15·5087

2 0 3·7817 6·1769 6·5340 6·6822 8·1903 8·3813 8·5963 9·8137
15 4·1722 6·9883 8·4882 8·6451 8·8976 10·2454 10·8561 11·3357
30 5·0329 7·4594 7·9031 8·3637 9·0549 9·8884 10·4439 10·5931
45 4·6688 5·8107 5·9515 7·7968 9·4174 10·0843 10·3795 11·0780
60 3·4439 4·7370 6·0361 7·3836 7·4992 9·1397 9·4337 11·9176
75 3·1092 4·3701 6·0960 6·6247 6·8481 8·3936 8·7239 10·5329
90 2·8995 4·2984 5·3481 6·1479 6·6361 7·9802 7·9812 8·8012

4 0 2·8384 4·1784 4·2568 5·0114 6·2324 6·3576 6·5554 7·6035
15 4·3634 4·4362 5·3027 6·6508 7·6509 7·6908 8·0926 8·1756
30 2·7484 5·2883 5·4116 6·0229 6·6181 7·1982 7·7748 7·8104
45 1·4864 3·1714 3·6846 5·9518 6·0247 6·4686 6·7075 7·7370
60 1·0958 2·3879 2·7016 4·7334 4·7370 6·4289 6·7857 7·0040
75 0·9938 2·1860 2·4196 4·1937 4·3701 6·1603 6·5501 6·7043
90 0·9464 2·1492 2·1784 3·6016 4·2984 5·0392 6·4120 6·4476
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Accordingly, the elements in M can be further expanded as
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where
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in which 8a, ub =8u, 8v, 8w, 8uu, 8uv and i, j=1, 2, . . . , m. In this study, the
integrand R in equation (22) was obtained by using the Gaussian quadrature
method.

3. NUMERICAL STUDIES AND DISCUSSIONS

Numerical results have been obtained using the proposed method for the
symmetrically laminated, super elliptical plates subject to a variety of aspect ratios,
length-to-thickness ratios, super elliptical powers, number of plies, stacking angles,
and boundary conditions. A convergence study has been carried out to ensure a
sufficient number of polynomials is employed in the integration. The results have
been compared with published solutions. The material properties assumed for the
examples of thick laminated plates are: E1/E2 =40, G12/E2 =0·6, G23/E2 =0·5,
G13 =G12, n12 =0·25, and a length-to-thickness ratio of 5.

In the first example, a four-ply laminate with an aspect ratio of 2, stacking
sequence [u/−u]s, and subjected to free, simply-supported, and clamped boundary
conditions have been examined. The stacking angle u varies from 0 to 90° with
15° increment. As shown in Table 1, convergence of the lowest four frequency
parameters l has been studied by increasing the degree of polynomials p. It is seen
that the errors between p=11 and p=15 are less than 0·4% in all cases and even
smaller for the fundamental modes. Therefore, it is concluded that p=15 is able
to ensure convergence of results and has been adopted in all examples.

To check the accuracy of results, a comparison of the lowest six frequency
parameters, l1 =v(a/p)2zrh/D0, has been presented in Table 2 for isotropic,
super elliptical, thin plates with a/b=2, n=0·3, simply-supported, and clamped
boundary conditions. The results from this analysis show close agreement with
published solutions [2, 3, 7] obtained from classical thin plate theory. In Tables 3
and 4, the present method has been applied to: (i) isotropic, super elliptical, thick
plates with a/b=1, h/a=0·3, and n=0·3; (ii) 16-ply, clamped, circular, thin
laminates of E-glass/epoxy. As anticipated, published results [10, 15] using the
Reddy’s higher-order theory and the classical laminate theory are in excellent
agreement with the results obtained by the present method.

To further understand the complicated effect of plate geometry, boundary
conditions, and stacking angles on the non-dimensional frequency parameter of
the first flexural mode, an extensive study has been conducted. First, the effect of
super elliptical power n on the frequency parameter l for thick super elliptical
laminates with a/b=2 and stacking sequence [45/−45]S has been illustrated in
Figure 2. More details of the influence of super elliptical powers n and boundary
conditions on the lowest eight frequency parameters of the same laminated plates
are given in Table 5. From Figure 2, it is clear that the frequency parameters tend
to converge when super elliptical power n is greater than 10 because of the
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similarity between such super ellipse and the rectangle which is the super ellipse
with n approaching infinity. Lower frequency parameters are obtained for higher
super elliptical power n because the increase in n leads to an increase of mass in
the laminated super elliptical plate. Furthermore, stiffer boundary constraints lead
to higher frequency parameters in all modes.

Next, the effect of stacking angle on the non-dimensional frequency parameter
l for the four-ply, thick, super elliptical laminate subject to free, simply-supported,
and clamped boundary conditions is given in Figure 3. Super ellipse powers n of
1, 10, and infinity have been analyzed, with a laminate aspect ratio of 2, and the
layering angle of [u/− u]s. It is found the frequency parameters for clamped and
simply-supported laminates increase with larger stacking angle. However, for
free super elliptical laminates, the first flexural mode undergoes a transition
from torsional mode to bending mode while the stacking angle increases.
Table 6 provides further insight about this transition and it is noted that the
displacement contours on the mid-plane of free super elliptical laminates are
affected by the stacking angle. One may observe the frequencies increase with
stacking angle for torsional modes but decrease for bending modes for free
elliptical laminates. A similar trend can also be seen on the curves of n=10 and
n=a.

Figure 4 shows the effect of aspect ratio on the non-dimensional frequency
parameters l3 of the thick, super elliptical laminate. Here, super elliptical powers
n of 1 and 10 have been considered and the laminates’ aspect ratios vary from 0·25,
0·5, 1·0, 1·5, 2·0, 2·5, 3·0, 3·5, to 4·0. A stacking sequence of [45/−45]S was studied
in this example. As expected, the frequencies of super elliptical laminate with n=1
are higher than those of n=10. It is also seen that higher frequencies were
obtained for clamped, simply-supported super elliptical laminates with higher
aspect ratios. The increase in aspect ratio leads to the decrease in mass and
consequently increases the frequency. Interestingly, the frequencies of free super
elliptical laminates exhibit the tendency to converge when their aspect ratios are
over 1·5. A similar trend was seen in Narita’s investigation on the free, elliptical,
orthotropic thin plates [5]. It should be addressed that the first flexural modes
compared in Figures 2–4 may not be the lowest modes. This is because some lowest
modes of simply-supported and free laminates are in-plane modes whose
transverse displacement magnitude is far smaller in comparison with the in-plane
displacements. As shown in Table 6, the in-plane modes are completely without
contour lines but with significantly deformed outlines. It is also worth noting that
the first in-plane modes of both simply-supported and free laminates with the same
plate geometry yield similar frequency results since in-plane displacements between
simply-supported and free laminates are similar.

Simply-supported, super elliptical, thick laminates have been studied on the
effect of length-to-thickness ratio on the fundamental frequency parameters by
varying length-to-thickness ratio a/h from 5, 10, 20, 50, 100, to 1000. As can be
seen in Figure 5, the fundamental frequency converges as the laminate becomes
thinner (a/hq 100). Super elliptical laminates with n=4 and n=10 show very
similar curves which indicates that the geometric differences are not significant.
Moreover, by comparing the curves of n=2, 4, and 10 in Figure 6, it is found
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that the increase in n does not guarantee a higher fundamental frequency if a/h
is greater than 50.

The following examples consider eight-ply, super elliptical, thick laminates
subjected to free, simply-supported, and clamped boundary conditions. Selected
displacement contours and mode shapes for the lowest four modes of the eight-ply,
super elliptical, thick laminates with a/b=2, a/h=5, and stacking sequence
[(45/−45)2]S have been plotted. Tables 7 and 8 show the 3-D mode shapes and
the displacement contours on top, middle, and bottom surfaces as the contours
may change along the thickness direction of the thick laminates. A solid line
denotes the displacement contours along the positive z direction while a dashed
line has been used for the negative z direction. The displacement contours of
modes 1 and 3 in simply-supported cases disappear because the in-plane
displacements are dominant in these two modes.

A cursory investigation of the effects of super elliptical power, aspect ratio, and
stacking angle on the frequency parameter l is tabulated in Tables 9 and 10. The
super elliptical power n is assumed to be 1 and 10 for Tables 9 and 10 respectively.
The laminates are assumed to be subject to free, simply-supported and clamped
boundary conditions and stacked in the sequence of [(u/−u)2]s. It is observed that
the effect of stacking angle varies with the aspect ratio and boundary conditions
of the laminates. From the results in Tables 9 and 10, it is found that maximum
frequency parameters occur: (i) for free edge condition, with a stacking angle
between 30 and 45° and an aspect ratio of 1; (ii) for free edge condition, with a
stacking angle between 0 and 45° and an aspect ratio of 2; (iii) for free and
simply-supported edge conditions, with a stacking angle between 0 and 30° and
an aspect ratio of 4; (iv) for simply-supported and clamped edge conditions, with
a stacking angle between 15 and 45° and an aspect ratio of 1; (v) for
simply-supported edge condition, with a stacking angle between 15 and 60° and
an aspect ratio of 2; (vi) for clamped edge condition, with a stacking angle between
45 and 75° and an aspect ratio of 2 or 4. Lastly, the similarity between the results
of eight-ply, thick super elliptical laminates and those of four-ply cases in
preceding examples indicates that the number of plies does not have a pronounced
influence.

4. CONCLUSIONS

The natural frequencies and mode shapes of a class of plates with rounded
corners have been obtained using the p-Ritz method. The plate planform is defined
by a super elliptic function which can form a plate shape varying from a square
or rectangle to a circle or ellipse. Numerical examples for symmetrically laminated
super elliptic plates for free, simply-supported, and clamped boundary conditions
have been considered by varying the fiber stacking sequence and degree of super
ellipticity.

Although the p-Ritz method has been extensively used in plate vibration
problems, in this paper the method has been applied successfully for the first time
to the problem of super elliptical planform for symmetrically laminated plates with
the inclusion of transverse shear deformation effects. This has been done by
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employing Reddy’s higher-order plate deformation theory. The method could be
readily extended to the calculation of natural frequencies and mode shapes of more
complex geometry and boundary conditions, such as a super elliptical plate with
internal line or ring supports.
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